A.D.M. COLLEGE FOR WOMEN (AUTONOMOUS),

NAGAPATTINAM

(Accredited With 'A' Grade By NAAC 3rd Cycle) (Affiliated to Bharathidasan University, Tiruchirappalli)

PG AND RESEARCH DEPARTMENT OF PHYSICS

SYLLABUS B.Sc. PHYSICS (2021-2024 Batch)

A.D.M COLLEGE FOR WOMEN (AUTONOMOUS), Nagapattinam

UG Programme - B.Sc., Physics (For the candidates admitted from 2021 – 2022 onwards)

Bloom's Taxonomy Based Assessment Pattern

Knowledge Level

K1 – Acquire/ Remember	K2–Understanding	K3–Apply	K4– Analyze	K5 –Evaluate	K6 – Create
-------------------------------	------------------	----------	-------------	---------------------	--------------------

Part I, II and III

Theory (External + Internal = 75 + 25 = 100 marks)

	External/Internal							
Knowledge Level	Section	Marks	Hrs	Total	Passing Mark			
K1-K3	A(Answer all)	10 ×2 =20						
K3-K6	B(Either or pattern)	5 ×5 = 25	3	75	30			
K3-K6	C(Answer 3 out of 5)	3 ×10 =30						

PG AND RESEARCH DEPARTMENT OF PHYSICS B.Sc. PHYSICS COURSE STRUCTURE UNDER CBCS (2021-2024 Batch) OBE ELEMENTS

Programme Educational Objectives (PEO):

PEO 1:	To acquire and maintain standards of achievement in terms of knowledge,					
	understanding and skills in Physics and their applications to the natural					
	phenomenon aswell as the development of scientific attitudes.					
PEO 2:	Promote Analytical Thinking and research skills in the minds of students To					
	acquire fundamental/systematic or coherent understanding of the academic					
	field of Physics and its different learning areas with applications in basic					
	Physics.					
PEO 3:	Mould the students to face the multi-faceted with					
	a broad conceptual background in the Biological sciences / Computing					
	sciences / Physical sciences.					
PEO 4:	Acquire practical skills to gather information, assess, create and execute new					
	ideas to develop entrepreneurial skills are trained to take up higher learning					
	programmes.					
PEO 5:	Apply knowledge and skill in the design and development to technical,					
	analytical and creative skills. Ability to use modern instrumentation and					
	laboratory techniques to design and perform experiments in almost all the					
	fields of Physics.					

Programme Outcomes (PO):

On completion of the course the learner will be able to

PO 1:	Undergraduate students are to be passionately engaged in initial learning with an aim to think differently as agents of new knowledge, understanding and applying new ideas in order to acquire employability/ self employment.
PO 2:	Undergraduate students are trained to take up higher learning programmes.
PO 3:	Undergraduate students are made to be competent and socially responsible.
PO 4:	Undergraduate students are to be exposed to technical, analytical and creative
	skills.
PO 5:	Undergraduate students are to be imparted with a broad conceptual background in
	the Biological sciences / Computing sciences / Physical sciences

Programme Specific Outcomes (PSO):

On completion of the course the learner will be able to

PSO 1:	Enhance conceptual knowledge
PSO 2:	Awareness on impact of physics
PSO 3 :	Observational, measuring and computational techniques
PSO 4:	Impart experimental skills
PSO 5:	Improve problem analyzing, logical thinking, reasoning, troubleshooting and
	solving skill

B.Sc. PHYISCS 2021- 2024 Batch

STRUCTURE OF THE PROGRAMME

Part	Title of the part	No. of Courses	Hours	Credit
Ι	LC- Language Course	4	24	12
II	ELC – English Language Course	4	24	12
III	CC- Core Course	13	70	63
	AC –Allied Course	6	28	18
	MBE - Major Based Elective	3	17	17
IV	NME - Non- Major Elective	3	6	6
	SBE - Skill Based Elective	2	4	4
	SSD – Soft Skill Development	0	0	1
V	ES - Environmental Studies	1	2	2
	VE - Value Education	1	2	2
	EA - Extension Activities	1	2	2
	GS - Gender Studies	1	1	1
	Total	39	180	140

* Extra Credit Courses:

•

Semester I - Electronics Instrumentation and Circuits	
Semester II - Applications of Digital Multimeter	

B.Sc. PHYSICS 2021- 2024 Batch

SCHEME OF THE PROGRAMME

Sem.	Part	Course	Course	Ins.	Credit	Exam	Ma	rks	Total	
Sem.	1 ui t	Code	Course	Hrs	Creun	Hours	CIA	SE	Marks	
	Ι	LCTA	LC- Language Course	6	3	3	25	75	100	
	1		Ikkala Ilakkiyam	0	5		25	15	100	
	II	LCEA	ELC – English Language Course	6	3	3	25	75	100	
			Prose for Effective Communication							
	III	PUA	CC- Core Course I	6	6	3	25	75	100	
			Properties of Matter and Acoustics							
I		PUBY	CC- Core Course II	3	-	-	-	-	-	
			Practical I							
			MUA1	AC –Allied Course I	4	3	3	25	75	100
			Mathematics I							
		MUA2	AC –Allied Course II	3	-	_	_	_	-	
			Mathematics II							
	IV	VE	Value Education	2	2	3	25	75	100	
			Total	30	17	-	-	-	500	
	Ι	LCTB	LC- Language Course							
			Idaikala Ilakkiyam Puthinamum	6	3	3	25	75	100	
	II	LCEB	ELC – English Language Course	6	3	3	25	75	100	
			Poetry for Effective Communication							
II		PUC	CC - Core Course III	6	6	3	25	75	100	
			Mechanics							
		PUBY	CC- Core Course II	3	3	3	40	60	100	
	III		Practical I							
		MUA2	AC -Allied Course II	2	3	3	25	75	100	
			Mathematics II							
		MUA3	AC -Allied Course III	5	3	2	25	75	100	
			Mathematics III							
	IV	ES	Environmental Studies	2	2	3	25	75	100	
			Total	30	23				700	

		LCTC	LC- Language Course								
	Ι		Kappiyamum Nadagamum	6	3	3	25	75	100		
	II	LCEC	ELC – English Language Course Drama for Effective Communication	6	3	3	25	75	100		
		PUD	CC - Core Course IV Thermal Physics	5	5	3	25	75	100		
ш	III	PUEY	CC - Core Course V Practical II	4	-	-	-	-	-		
		QUA1	AC -Allied Course I Chemistry I	5	3	3	25	75	100		
		QUA2Y	AC -Allied Course II Chemistry II	2		_	-	-	_		
	IV	PUE1	NME -Non Major Elective I Energy Physics / Physics for Competitive Examinations	2	2	3	25	75	100		
			Total	30	16	_	-	-	500		
	т	LCTD	LC- Language Course				25	75	100		
	Ι		Pandaya Ilakkiyamum Urainadayum	6	3	3	23	15	100		
	II	LCED	ELC – English Language Course Short stories for Effective Communication	6	3	3	25	75	100		
IV		PUF	CC - Core Course VII Electricity Magnetism and Electromagnetism	5	5	3	25	75	100		
		PUEY	CC - Core Course VIII Practical II	2	4	3	40	60	100		
	III	III	111	QUA2Y	AC -Allied Course II Practical II	3	3	3	40	60	100
						QUA3	AC -Allied Course III Chemistry III	4	3	3	25
	IV	PUE2	NME - Non Major Elective II Weather Forecasting / Remote Sensing & GIS	2	2	3	25	75	100		
	V	PUS1	SBE – Skill- Based Elective I Astrophysics / Space Science	2	2	3	25	75	100		
			Total	30	25	-	-	-	800		

		PUG	CC - Core Course IX		F	2	25	75	100
			Optics	5	5	3	23	15	100
	III	PUH	CC- Core Course X		-	2	25	75	100
			Atomic and Molecular Physics	5	5	3	25	15	100
		PUI	CC - Core Course XI		٦	2	25	75	100
			Electronics	5	5	3	25	15	100
		PUJY	CC- Core Course XII		4	2	40	60	100
V			Practical III	4	4	3	+0		100
		PUE3	MBE –Major Based Elective I Microprocessor and C Programming / Principles of Information Technology	5	5	3	40	60	100
	IV	PUS2	SBE –Skill Based Elective II Biomedical Instrumentation / Medical Physics	2	2	3	25	75	100
		PUS3	SBE – Skill Based Elective III				25	75	100
			Statistics / Statistical Interference	2	2	3	25	75	100
		SSD	Soft Skills Development	2	2	3	25	75	100
			Total	30	30	-	-	-	800
		PUK	CC- Core Course – X III	ſ	E	2	25	75	100
			Nuclear Physics	6	6	3		, 5	100
	III								. —
	111	PUL	CC- Core Course – XIV	E	E	2	25	75	100
	111	PUL	CC- Core Course – XIV Classical and Quantum Physics	6	6	3	25	75	100
	111	PUL PUMY							
	111		Classical and Quantum Physics	6	6 5	3	25 40	75 60	100 100
VI	111		Classical and Quantum Physics CC - Core Course – XV	6	5	3	40	60	100
VI	111	PUMY PUE4	Classical and Quantum Physics CC - Core Course – XV Practical IV MBE – Major Based Elective II Materials Science / Nano Materials and Applications						
VI		PUMY	Classical and Quantum Physics CC - Core Course – XV Practical IV MBE – Major Based Elective II Materials Science / Nano Materials and Applications MBE – Major Based Elective III Communications Physics / Computer	6	5	3	40	60	100
VI		PUMY PUE4	Classical and Quantum Physics CC - Core Course – XV Practical IV MBE – Major Based Elective II Materials Science / Nano Materials and Applications MBE – Major Based Elective III	6	5 5 5	3	40 25	60 75	100
VI		PUMY PUE4 PUE5	Classical and Quantum Physics CC - Core Course – XV Practical IV MBE – Major Based Elective II Materials Science / Nano Materials and Applications MBE – Major Based Elective III Communications Physics / Computer Organization and Architecture	6 5 6 -	5 5 5 1	3 3 3 -	40 25 25	60 75	100 100 100
VI		PUMY PUE4 PUE5 EA	Classical and Quantum Physics CC - Core Course – XV Practical IV MBE – Major Based Elective II Materials Science / Nano Materials and Applications MBE – Major Based Elective III Communications Physics / Computer Organization and Architecture Extension Activities	6 5 6	5 5 5	3 3 3	40 25 25 -	60 75 75 -	100 100 100 -

Semester-I /	PROPERTIES OF MATTER AND	Course Code: PUA
Core Course-I	ACOUSTICS	
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K-1 Acquire/Remember	
Level	K-2 Understand	
	K-3 Apply	
	K-4 Analyze	
	K-5 Evaluate	
	K-6 Create	
Course	• To Know the elastic behavior of substance	
Objectives	• To Examine how bending moment various at the cut position of the	beam
	• for various loading condition	
	• To learn about the fluid property of the surface tension whenever the	re is an
	• Interfacial between a liquid, solid or a gas.	
	• To measure the viscosity of a sample liquid.	
	• To learn the basic principles of Acoustics.	
UNIT	CONTENT	HOURS
Ι	ELASTICITY	18
	Hooke's law – Stress-Strain diagram – Factors affecting	
	elasticity- Different moduli of elasticity - Relation between the elastic	
	moduli - Poisson's ratio -expression for poisson's ratio in terms of	
	elastic constant-Twisting couple on a cylinder - Determination of	
	rigidity modulus by static torsion - Work done in twisting a wire -	
	Torsional oscillations of a body-Torsion pendulum .	
II	BENDING OF BEAMS	18
	Bending of beams-Expression for bending moment-	
	Cantilever-Expression for depression of the loaded end of a	
	cantilever — Young's modulus by measuring the tilt in a loaded	

	Expression for depression- Uniform bending - Expression for	
	elevation –Experimental determination of Young's modulus using	
	pin and microscope method (Non-uniform bending - Uniform	
	bending) - Determination of Young's modulus by Koenig's method.	
	SURFACE TENSION	18
	Definition – Molecular forces – Explanation of surface tension	
	on kinetic theory - Surface energy - Work done on increasing the	
	area of a surface -Angle of contact - Neumann's triangle- Excess	
	pressure inside a liquid drop and soap bubble - Excess pressure inside	
	a curved liquid surface - Force between two plates separated by a thin	
	layer of a liquid - Experimental determination of surface tension -	
	Jaegar's method - Drop- weight method - Capillary rise method -	
	Variation of surface tension with temperature.	
IV	VISCOSITY	18
	Newton's law of viscous flow - streamlined and turbulent	
	motion – Reynold's number - Poiseuille's formula for the flow of a	
	liquid through a horizontal capillary tube – Experimental	
	determination of co-efficient of a liquid by Poiseuille's method -	
	Ostwald's viscometer - Terminal velocity and Stokes' formula -	
	Viscosity of gases - Meyer's formula - Rankine's method - Variation	
	of viscosity with temperature and pressure - Lubrication.	
	Equation of continuity of flow – Euler's equation for unidirectional	
	flow -Bernoulli's theorem - Filter pump and Wings of aero plane -	
	Torricelli's theorem - Pitot tube.	
V	ACOUSTICS	18
	Newton's Formula for velocity of sound -Effect of	
	Temperature, Pressure, Humidity, Density of medium and Wind -	
	Musical Sound and Noise – Speech- Characteristics of Musical sound	
	- Intensity of sound - Measurement of intensity of sound :Decibel	
	and Phon- Bel. Reverberation - Sabine's Reverberation formula -	
	factors affecting the acoustics of buildings – Sound distribution in an	
	Auditorium – Requisites for good acoustics – Ultrasonic's –	
	Production and detection – Medical applications of Ultrasonic waves.	

VI	ANY THREE:	Practical					
	Experimental determination of Young's modulus resonant						
	frequency method and ultrasonic echo-pulse method						
	Determination of Surface tension by ripple method						
	Discussion on industrial applications of Ultrasonic waves						
	Study of different types of viscometers						

Text book

R. Murugeshan, Properties of matter, S. Chand & Co. Pvt. Ltd., Revised edition, 2012.Brijlal& N. Subramanyam, Properties of matter, VikasPublishng. Pvt. Ltd, 2005.Brijlal& N. Subramanyam, 'A Text Book of Sound', Vikas Publishing. Pvt. Ltd, 2008

Reference Books:

- 1. Feynman, Lectures on Physics. Vol. I & II by Richard P. Feynman, 2012.
- 2. David Halliday and Robert Resnick, Fundamentals of Physics by Wiley Plus., 2013.
- 3. B.H. Flowers and E. Mendoza, Properties of matter, Wiley Plus, 1991.
- 4. H.R. Gulati, Fundamentals of General properties of matter, S. Chand & Co. Pvt. Ltd, 2012.
- 5. Chatterjee and Sen Gupta, A treatise on general properties of matter, New central Books agency (p) Ltd, Kolkata, 2001.
- 6. R.L. Saihgal, A Text Book of Sound, S. Chand & Co. Pvt. Ltd, New Delhi, 1979.

Web Resources

http://www.physicstutorial.org

https:// www.sciencelearn.org

Acoustics-Basics Physics, Theory and Methods-P.Filippi,et al., (Elsevier, 1999)

Course Outcomes:

On completion of the course the learner will be able

CO 1: To learn how to measure elasticity by various methods

CO 2: To demonstrate a basic understanding of bending of beams, depression and Elevation of Cantilever.

CO 3: Define surface tension as a Physical Property and the units that are used to measure it.

CO 4: Learn about the formula for viscosity, fluid flow and measurement of viscosity using lab experiments.

CO 5: Experience when our ears are excited by vibration in the gas that surrounds us an\production, detection and medical applications of Ultrasonic waves.

CO/PO	РО					PO PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	S	S	S	S	S	S	S
CO2	S	S	М	S	S	S	S	S	S	S
CO3	S	S	М	S	S	S	S	S	S	S
CO4	S	S	М	S	S	S	S	S	S	S
CO5	S	S	М	S	S	S	S	S	М	S

Mapping of COs with POs & PSOs:

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester: I & II	CORE PRACTICAL – I	Course Code: PUBY
Core Course II		
Exam Hours: 3	Credits: 3	No. of Hours / Week: 3
Internal: 40	External: 60	Total Marks: 100

Course Objectives:

- To motivate and educate the students to acquire skill in physics Experiments.
- Experimental determination of Young's modulus.
- To Measure of length using Vernier calipers, Screw gauge and travelling microscope.
- To understand the principle and carry out the experiments systematically.
- In the laboratory course, the hands-on experience of using surface tension, Coefficient of viscosity liquid in Poiseuille's flow method, Searle's viscometer method.

LIST OF EXPERIMENTS

- 1. Measurements of length (or diameter) using Vernier calipers, Screw gauge and travelling microscope.
- 2. Non uniform bending Pin & Microscope Method.
- 3. Cantilever depression—Scale and Telescope Method.
- 4. Surface Tension, Interfacial Surface Tension– Drop weight Method.
- 5. Surface Tension by Capillary rise method.
- 6. Compound pendulum g & k determination.
- 7. Uniform bending –Scale and Telescope.
- 8. Static Torsion -Determination of Rigidity modulus (n).
- 9. Torsional Pendulum Rigidity modulus (n) and moment of inertia (I).
- 10. Coefficient of viscosity of liquid—Poiseuille's flow method.
- 11. Coefficient of viscosity of highly viscous liquid—Searle's viscometer method.
- 12. Stoke's method Viscosity of highly viscous liquid.

Text Books:

- 1. Dr. S. Somasundaram, Practical Physics, Apsara publications, Tiruchirapalli, 2012.
- Department of Physics, Practical Physics, (B.Sc. Physics Main), St. Joseph's College, Tiruchirapalli 1998.

Web-Resources:

Online Lab Manual

https://www.olabs.edu.in

Course Outcomes:

On completion of the course the learner will be able

CO 1: To learn how to measure viscosity and Surface tension by various methods.

CO 2: To demonstrate a basic understanding of bending of beams, depression of Cantilever.

CO 3: To demonstrate surface tension as a physical Property and the units that is used to measure it.

CO 4: In the laboratory course they apply the experiments related to mechanics (Compound pendulum).

CO 5: In the laboratory course, the experiments related to Properties of Matter elastic properties (Young Modulus and Modulus of Rigidity) and fluid dynamics(Verification of Stokes law, Searle method) etc.

CO/PO	РО					PO PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	S	S	S	S	S	S	S
CO2	S	S	М	S	S	S	S	S	S	S
CO3	S	S	М	S	S	S	S	S	S	S
CO4	S	S	М	S	S	S	М	S	S	S
CO5	S	S	М	S	S	S	S	S	S	S

Mapping of COs with POs & PSOs:

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-II / Core Course-III	MECHANICS	Course Code: PUC
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	 K-1 Acquire/Remember K-2 Understand K-3 Apply K-4 Analyze K-5 Evaluate K-6 Create An attempt is made to give a better insight of the change of pose physical object or event and their consequences. Apply Kepler's law to describe the motion of planets and satellite in c through the study of law of Gravitation. Describe special relativistic effects and their effects on the mass and moving object. Understand that the center of gravity, center of pressure and the Pressure 	ircular orbit, l energy of a
UNIT	CONTENT	HOURS
Ι	PROJECTILE, IMPULSE AND IMPACT Projectile - particle projected in any direction - Path of a projectile is a parabola - Range of a projectile on plane inclined to the horizontal - Maximum range on the inclined plane - Impulse of a force - Laws of impact - Direct impact between two smooth spheres - oblique impact between two smooth spheres - Impact of a smooth sphere on a smooth fixed horizontal plane - Loss of KE due to direct impact - Oblique impact-reduced mass.	18
II	MOTION ON A PLANE CURVE Centripetal and centrifugal forces - Hodograph - Expression for normal acceleration Motion of a cyclist along a curved path - Motion of a railway carriage round a curved track- upsetting of a carriage - Motion	18

III	of a carriage on a banked up curve - Effect of earth's rotation on the value of the acceleration due to gravity - Variation of 'g' with altitude, latitude and depth.	18
	and Gravitation mass - Determination of G-Boy's experiment -Kepler's Laws of planetary motion -Deduction of Newton's law of gravitation from Kepler's Law - Gravitation - Field - potential -Intensity of Gravitational field - gravitational potential due to a point mass - Equipotential surface -Gravitational potential and field due to a spherical shell and solid sphere – Escape velocity –Orbital velocity.	
IV	DYNAMICS OF RIGID BODY AND FRICTION Moment of Inertia - Kinetic energy and angular momentum of rotating body- Theorems of perpendicular and parallel axes - Acceleration of a body rolling down an inclined plane without slipping - Oscillations of a small sphere on a large concave smooth surface - Compound pendulum - Centre of suspension and centre of oscillation - Centre of percussion - Minimum period of a compound pendulum - Kater's pendulum. Friction - Laws of friction - Resultant reaction - Angle and cone of friction - Equilibrium of a body on a rough plane inclined to the horizontal - The friction clutch.	18
V	CENTRE OF GRAVITY, CENTRE OF PRESSURE, FLOATING BODIES, ATMOSPHERIC PRESSURE Centre of gravity of a body - Centre of gravity of a trapezoidal lamina - C.G. of a solid hemisphere - C.G. of a solid tetrahedron - C.G. of a solid cone. Centre of pressure - rectangular lamina - triangular lamina - triangular lamina immersed in a liquid. Conditions of equilibrium of a floating body - Stability of equilibrium of a floating body - Metacentre - Experimental determination of a metacentric height of aship. The barometer - Fortin's barometer - Correction for a	18

	barometer - Faulty barometer - Variation of atmospheric pressure with altitude.	
VI	ANY THREE:	Group
	C.G. of a hollow hemisphere	Discussion
	Study and analysis of Aneroid Barometer and Cistern Barometer	
	Determination of 'G' using Cavendish Method	
	Calculation of time period of Foucalt and Bifilar Pendulum	

- 1. M. Narayanamurthi and N. Nagarathinam, Dynamics, The National Publishing Company 2005, Chennai.
- 2. M. Narayanamurthi and N. Nagarathinam, Statics, Hydrostatics and Hydrodynamics -The National Publishing Company 2005, Chennai

Reference Books:

- R. Murugesan, Mechanics and Mathematical Physics, S. Chand & Company Ltd., New Delhi, 2008.
- 2. D.S. Mathur, Mechanics, S. Chand & Company Ltd., New Delhi 1990.

Web-Resources:

www.freebookcentre.net/Physics/Mechanics-Books-Download.htm

An Introduction To The Special Theory of Relativity.Pdf

Course Outcomes:

CO 1: Understand Laws of Motion and their application

CO 2: Learn the concept of Conservation of Energy, Momentum, Angular

Momentum and pply them to basic problems.

CO 3: Understand the analogy between Translational and Rotational Dynamics, and application of both motions simultaneously in analyzing rolling with slipping.

CO 4: Develop the Energy of the Friction with the Compound Pendulum and

Friction Clutch.

CO 5: To understand various Dynamical Situations, Notion of Inertial Frames and Concept of Galilean Invariance.

Mapping of COs with POs & PSOs:

CO/PO	РО) PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	S	S	S	S	S	М	М
CO2	S	S	М	S	S	S	S	S	S	S
CO3	S	S	М	S	S	S	S	S	М	S
CO4	S	S	М	S	S	S	S	S	S	S
CO5	S	S	М	S	S	S	М	S	М	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-III /	THERMAL PHYSICS	Course Code: PUD
Core Course-IV		
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K-1 Acquire/Remember								
Level	K-2 Understand								
	K-3 Apply								
	K-4 Analyze								
	K-5 Evaluate								
	K-6 Create								
Course	• To understand the phenomena connected with heat as radiation, conduct	ion, different							
Objectives	thermal capacities of substances								
	• To learn about the converse process of making heat to do mechanical wo	rk.							
	• Students learn about the concepts of heat, work, and energy.								
	• Student learns the different laws of thermodynamics.								
	• To learn thermo-dynamical functions and there relations.								
UNIT	CONTENT	HOURS							
Ι	Specific Heat	18							
	Specific heat of solids – Method of mixtures – radation correction –								
	Dulong and Petit's law - Quantum theory - Einstein's theory of specific								
	heat – Debye's theory of specific heat– Specific heat of liquids – Newton's								
	law of cooling - Specific heat of gases - Mayer's Relation - Quantization								
	of various contributions to energy of diatomic molecules – Specific heat of								
	diatomic gases.								
II	Conduction.	18							
	Coefficient of Thermal Conductivity - Rectilinear Flow of Heat along								
	a Bar - Thermal conductivity of good conductors - Lee's method for metals								
	- Forbe'smethod to find K - Lee's disc method for Bad Conductors - Heat								
	Flow Through a Compound wall – Accretion of Ice on Ponds –								
	Wiedemann-Franz law – Practical applications of conduction of heat.								

III	Radiation	18
	Radiation – Stefan's law - Deduction of Newton's law from Stefan's	
	law – Boltzmann's law – Block body radiation – Wein's law – Rayleigh-	
	Jean's law – Planck's law – Angstrom Pyrheliometer – Solar constant –	
	Surface temperature of sun - Sources of solar energy – Photo voltaic cell	
IV	Low Temperature	18
	Joule – Thomson's effect – Porous plug experiment – Liquefaction of	
	gases -Linde's method - Liguefaction of hydrogen - Adiabatic	
	demagnetization - Liquefaction of He - Practical applications of low	
	temperature – Refrigerating mechanism – Air conditioning mechanism	
V	Thermodynamics	18
	Zeroth law of thermodynamics – First law of thermodynamics –	
	Heat engines – Reversible and irreversible process - Carnot's theorem –	
	Second law of thermodynamics - Thermodynamic Scale of temperature -	
	Entropy - Change of entropy in reversible and irreversible processes -	
	Temperature - entropy diagram (T.S) - Law of increase of entropy -	
	Maxwell's thermo dynamical relations - Clausius' - Claypeyron's latent	
	heat equations.	
VI	ANY THREE:	Practical
	Determination of Coefficient of Thermal Conductivity	
	Principle and working of Air conditioning mechanism	
	• Determination of Change of entropy in reversible and irreversible	
	processes	
	• Working of Photo voltaic cell	
	• Determination of Planck's constant	

1. Brijlal and Subramaniyam, Heat and Thermodynamics, S. Chand &Co., 2001.

Reference Books:

- 1. J. B. Rajam and C. L Arora, *Heat and Thermodynamics*, S. Chand & Co.1983.
- Brijlal and Subramaniyam, *Heat and Thermodynamics & Statistical physics*, S. Chand & Co. 2015.
- 3. M. Narayanamoorthy and N. Nagarathinam, *Heat*, National publishing Co, Chennai, Eight edition, 1987.

Web-Resources:

https://www.compadre.org/STP/

http://www.rossmanchance.com/applets/index.html

http://www.thermofluids.net/:

Course Outcomes:

On completion of the course the learner will be able

CO 1: Students will demonstrate a basic understanding of the concepts and underlying principles of classical physics.

CO 2: Students will gain an appreciation of the quantitative methods used in Physics

CO 3: Understand the concept of thermodynamics and there laws.

CO 4: Understand the Heat Engine and there uses.

CO 5: Describe the Thermodynamic function and there relations.

Mapping of COs with POs & PSOs:

CO/PO	PO						PSO				
	1	2	3	4	5	1	2	3	4	5	
CO1	S	S	М	S	S	S	S	S	М	S	
CO2	S	S	М	S	S	S	S	S	S	S	
CO3	S	S	М	S	S	S	S	S	S	S	
CO4	S	S	М	S	S	S	S	S	S	S	
CO5	S	S	М	S	S	S	S	S	S	S	

Semester-IV /	CORE PRACTICAL II	Course Code: PUEY
Core Course-V		
Instruction Hours: 4	Credits: 4	Exam Hours: 3
Internal Marks - 40	External Marks - 60	Total Marks: 100

Course Objectives:

- To enhance the knowledge in experimental physics.
- To comprehend the theory and objectives of the experiment
- To conceive the procedure to perform the experiment
- To check the suitability of the equipment, apparatus, tool regarding their working and functioning
- To know the limitations of measuring device and find its least count, error etc.

LIST OF EXPERIMENTS:

(Any Twelve Experiments)

- 1. Specific Heat Capacity of Liquid –Newtons Cooling Method.
- 2. B.G.Absolute capacity of condenser.
- 3. Specific Heat Capacity of Liquid-Jules calorimeter.
- 4. Newtons rings Determination of radius of curvature
- 5. Emissive power of a surface Spherical calorimeter.
- 6. Thermal conductivity of a bad conductor -Lee's disc method.
- 7. Carey Foster's Bridge –specific resistance determination.
- 8. Potentiometer Ammeter calibration
- 9. Potentiometer Voltmeter calibration low range.
- 10. Potentiometer determination of resistance.
- 11. Figure of merit of a mirror Galvanometer.
- 12. Spectrometer -Determination μ of a liquid.
- 13. Spectrometer- Grating--normal incidence method.
- 14. Air Wedge determination of Thickness of a thin wire.

Reference:

1. Dr. S. Somasundaram, Practical Physics, Apsara publications, Tiruchirapalli, 2012.

Course Outcomes:

On completion of the course the learner will be able

CO 1: Gain knowledge in the scientific methods and learn the process

CO 2: Educate The Basics Of Instrumentation, Data Acquisition And Interpretation of Results

CO 3: Enhance The Students Understand The Concepts In Materials Properties

CO 4: Have a deep knowledge of fundamentals of optics, electric circuits

CO 5Analyze the specific heat capacity, refractive index as per the standard procedure

CO/PO	PO					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	S	S	S	S	S	S	S
CO2	S	S	М	S	S	S	S	S	S	S
CO3	S	М	М	S	S	S	S	S	S	S
CO4	S	S	М	М	S	S	S	S	М	S
CO5	S	М	М	S	S	S	S	S	М	S

Mapping of COs with POs & PSOs:

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-III / NON-MAJOR ELECTIVE I	ENERGY PHYSICS	Course Code: PUE1
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K-1 Acquire/Remember								
Level	K-2 Understand								
	K-3 Apply								
	K-4 Analyze								
	K-5 Evaluate								
	K-6 Create								
Course	• To make the students to understand the present day crisis of need fo	r conserving							
Objectives:	energy and alternatives are provided.								
	• Know percentages and have understanding for magnitudes of energy a	nd resources							
	used								
	• Understand the special engineering challenges of using each of these	e sources of							
	energy efficiently and environmentally effectively.								
	• Understand the economics behind the costs of the uses and application	is of each of							
	these forms of energy								
	• Understand the energy conversion systems for nuclear power plants, the								
	advantages/disadvantages (including overall environmental effects) of each type of								
	present plants.								
UNIT	CONTENT	HOURS							
Ι	Conventional Energy Sources	6							
	World reserve- Commercial energy sources and their availability -								
	Various forms of energy - Renewable and Conventional energy system -								
	comparison - Coal, oil and natural gas - applications - Merits and								
	Demerits.								
II	Solar energy	6							
	Renewable energy sources - Solar energy - nature and Solar								

	radiation – components – Solar heaters – Crop dryers – Solar cookers – Water desalination (block diagram) –Photovoltaic generation – merits and demerits.	
III	Biomass energy fundamentals:	6
	Biomass Resources -Biofuels - Liquid Fuel -Biomass Conversion	
	Technology - Biochemical Conversion - Biomass Gasification - Bio Gas	
	Plants.	
IV	Biomass Utilization	6
	Bio Gas Plants - Wood Gasification - Advantage & Disadvantages	
	of Biomass as Energy Source Power Generation Liquid Waste, Bio Mass	
	Co Generation - Ethanol, Biodieselc - Biomass Resource Development In	
	India	
V	Other forms of Energy Sources	6
	Geothermal energy – Wind energy – Ocean thermal energy	
	conversion – Energy from waves and tides (basic ideas).	

- D.P. Kothari, K.C. Singal& Rakesh Ranjan, Renewable energy sources and emerging Technologies, Prentice Hall of India Pvt. Ltd., New Delhi (2008).
- 2. Study Material by Department of Physics -Unit V

Reference Book

S.A. Abbasiand NasemaAbbasi, *Renewable Energy sources and their environmental impact*, PHI Learning Pvt. Ltd., New Delhi (2008).

Web Resources:

http://www.lanl.gov/external

http://fnalpubs.fnal.gov

Course Outcomes:

On completion of the course the learner will be able

CO 1: Understand the sources of energy and their contributions to the energy and power needs of the nation and the world.

CO 2: Be able to effectively use Rankine Cycle analysis

CO 3: Understand the differences between large quantities of fuel and waste

CO 4: Fully appreciate the aspect of capital cost amortization and allocation to unit of energy produced.

CO 5: Be able to analyze comparisons of capital cost allocation, operating cost, including fuel costs. Special attention is given to the renewables for which there is zero or negligible fuel cost.

CO/PO	PO						PSO				
	1	2	3	4	5	1	2	3	4	5	
CO1	S	S	М	S	S	S	S	S	S	S	
CO2	М	S	М	S	S	S	М	S	S	S	
CO3	S	М	М	S	S	S	S	S	S	S	
CO4	S	М	S	S	S	S	М	М	М	М	
CO5	S	S	S	S	S	S	S	S	М	S	

Mapping of COs with POs & PSOs:

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-III / NON-MAJOR ELECTIVE I	PHYSICS FOR COMPETITIVE EXAMINATIONS	Course Code: PUE1
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K-1 Acquire/Remember									
Level	K-2 Understand									
	K-3 Apply									
	K-4 Analyze									
	K-5 Evaluate									
	K-6 Create									
Course	• To provide awareness to the students about the various types of jobs offere									
Objectives	the central and state government	the central and state government								
	• To help the students to choose the area where they are interested									
	• To develop competitive skills through various types of objective tests									
	• To train them by conducting aptitude test									
	• To enhance their ability to face the competitive exams									
UNIT	CONTENT	HOURS								
Ι	Units & Dimensions	6								
	SI units & dimensions -Dimensional analysis -Least count -Significant									
	figures.									
	inguros.									
II	Kinematics	6								
Π		6								
Π	Velocity-Acceleration-Motion in one and two dimensions (Cartesian	6								
II		6								
II III	Velocity-Acceleration-Motion in one and two dimensions (Cartesian	6								
	Velocity-Acceleration-Motion in one and two dimensions (Cartesian coordinates only)-Motion of projectiles. Dynamics									
	Velocity-Acceleration-Motion in one and two dimensions (Cartesian coordinates only)-Motion of projectiles. Dynamics Newton's law of motion-Inertial and uniformly accelerated frames of									
	Velocity-Acceleration-Motion in one and two dimensions (Cartesian coordinates only)-Motion of projectiles. Dynamics									
	Velocity-Acceleration-Motion in one and two dimensions (Cartesian coordinates only)-Motion of projectiles. Dynamics Newton's law of motion-Inertial and uniformly accelerated frames of									
III	Velocity-Acceleration-Motion in one and two dimensions (Cartesian coordinates only)-Motion of projectiles. Dynamics Newton's law of motion-Inertial and uniformly accelerated frames of reference-Force-Static and dynamic friction. Gravity	6								
III	Velocity-Acceleration-Motion in one and two dimensions (Cartesian coordinates only)-Motion of projectiles. Dynamics Newton's law of motion-Inertial and uniformly accelerated frames of reference-Force-Static and dynamic friction.	6								

V	Law of thermodynamics									
	Zeroth law -First and second law of thermodynamics and its									
	applications (only for ideal gases)									

Study Material Prepared by Department of Physics

Course Outcomes:

On completion of the course the learner will be able

CO 1: Deeper knowledge of subjects

CO 2: It motivates the students to prepare for high level competitive exams

CO 3: Competitive exams will enhance the skill of understanding the application of concepts,

which is required in a broader context when we appear for higher level exams

CO 4: Early exposure to learning and competition builds confidence and sharpens skills

which raise ones level from other students on the same platform.

CO5:It boosts morale while moving ahead in the future.

CO/PO	РО		PSO							
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	S	S	S	S	S	S	S
CO2	S	S	S	S	М	S	S	М	М	S
CO3	S	S	S	S	S	S	М	S	М	S
CO4	S	S	М	S	М	S	М	S	М	S
CO5	S	S	М	S	М	S	М	S	М	S

Mapping of COs with POs & PSOs:

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester - IV / Core Course -VI	ELECTRICITY, MAGNETISM AND ELECTROMAGNETISM	Course Code: PUF
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive K-1 Acquire/Remember												
Level K-2 Understand												
K-3 Apply												
K-4 Analyze												
K-5 Evaluate												
K-6 Create												
• This course provides an in depth coverage of behaviour	r of stationary electric											
Objectives: charges, electricity, magnetism and how they are connected.												
• This paper deals with the study of Electric field,	Magnetic field, and											
Electromagnetic theory.												
• The first unit gives the mathematical idea behind the electros	The first unit gives the mathematical idea behind the electrostatic field.											
• The second unit deals with the physics behind the Magneto st	tatistics.											
• Last unit deals with the electromagnetic theory.												
UNIT CONTENT	HOURS											
I Electrostatics Coulomb's Law – Gauss's Law and its	applications 18											
	TT TT TT											
(Electric Field due to a uniformly charged sphere, hollow cylin												
(Electric Field due to a uniformly charged sphere, hollow cylin cylinder)– Electric Potential – Potential at a point due to a unifor	nder & solid											
	nder & solid mly charged											
cylinder)– Electric Potential – Potential at a point due to a unifor	nder & solid mly charged pherical and											
cylinder)– Electric Potential – Potential at a point due to a unifor conducting sphere – Principle of a capacitor– Capacity of a s	nder & solid mly charged pherical and											
cylinder)– Electric Potential – Potential at a point due to a unifor conducting sphere – Principle of a capacitor– Capacity of a s cylindrical capacitors – Energy stored in a charged capacitor–Lo	nder & solid mly charged pherical and oss of energy											
cylinder)– Electric Potential – Potential at a point due to a unifor conducting sphere – Principle of a capacitor– Capacity of a s cylindrical capacitors – Energy stored in a charged capacitor–Lo on sharing of charges between two capacitors.	ations -Field 18											
cylinder)- Electric Potential – Potential at a point due to a unifor conducting sphere – Principle of a capacitor- Capacity of a s cylindrical capacitors – Energy stored in a charged capacitor-Lo on sharing of charges between two capacitors.IICurrent Electricity Ampere's circuital law and its applic	ations -Field 18											
cylinder)- Electric Potential – Potential at a point due to a unifor conducting sphere – Principle of a capacitor- Capacity of a s cylindrical capacitors – Energy stored in a charged capacitor-Lo on sharing of charges between two capacitors.IICurrent Electricity Ampere's circuital law and its applic along the axis of a circular coil and Solenoid-Theory	ations -Field 18 of Ballistic ff's Laws of											

	range) – Comparison of Resistances.	
III	Magnetism Intensity of Magnetization– Magnetic Susceptibility– Magnetic Permeability – Types of magnetic materials– Properties of para, dia and ferromagnetic materials–Langevin's theory of dia and para magnetism– Weiss's theory of ferromagnetism – B-H curve–Energy loss due to magnetic hysteresis – Ballistic Galvanometer method for plotting B-H curve - Magnetic properties of iron and steel.	18
IV	Electromagnetic Induction Laws of electromagnetic induction– Self and mutual induction– Self-inductance of a solenoid– Mutual inductance of a pair of solenoids–Coefficient of coupling–Experimental determination of self (Rayleigh's method) and mutual inductance– Growth and decay of current in a circuit containing L and R–Growth and decay of charge in a circuit containing C and R.	18
V	AC Circuits Alternating EMF applied to series circuits containing LC, LR and CR– Alternating EMF applied to circuits containing L, C and R– Series and Parallel resonance circuits– Sharpness of resonance–Q factor— Power in AC circuits (R, L-R, L-C-R only) – Power factor–Wattless current – Choke Coil – Transformer – Uses of Transformers – Skin Effect.	18
VI	 ANY THREE: Application of Gauss Law for electric field due to a infinite, uniformly charged straight conductor Determination of Absolute capacity of capacitance using Ballistic Galvanometer Study of Anderson's Bridge Determination of Susceptibility – Curie Balance method Growth and decay of S, C and R Three phase AC generators and motors 	Group Discussion

1. BrijLal and N. Subrahmanyam, *A Text Book of Electricity and Magnetism*, RatanPrakasanMandir Educational & University Publishers, new Deihi,2000.

Reference Book:

- D. L. Sehgal, K. L. Chopra and N. K. Sehgal, *Electricity and Magnetism*, S. Chand & Sons. New Delhi. 1996.
- R. Murugeshan, *Electricity and Magnetism*, S. Chand & Company Pvt. Ltd., New Delhi 2015

Web Resources:

http://www.physicstutorial.org

https:// www.sciencelearn.org

Course Outcomes:

On completion of the course the learner will be able

CO 1: Explain various phenomenon like Ferromagnetism, ant ferromagnetism etc.

CO 2: Understand the relation in between Electromagnetic theory.

CO 3: Explain various phenomenon in light of maxwell equations.

Mapping of COs with POs & PSOs:

CO/PO	РО									
	1	2	3	4	5	1	2	3	4	5
CO1	S	М	М	S	S	S	S	S	S	S
CO2	S	S	S	S	S	S	М	S	S	S
CO3	S	S	S	S	S	S	М	S	S	М
CO4	S	М	М	S	S	S	S	S	S	S
CO5	S	М	М	S	S	S	М	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-IV /	WEATHER FORECASTING	Course Code: PUE2
Non Major Elective II		
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive	K-1 Acquire/Remember								
Level	K-2 Understand								
	K-3 Apply								
	K-4 Analyze								
	K-5 Evaluate								
	K-6 Create								
Course									
Objectives	• Demonstrate knowledge of atmospheric composition and structure.								
	• Demonstrate knowledge of scientific methods relating to qualitative and								
	quantitative analysis of atmospheric variables and can develop some basic								
	analysis techniques to aid in understanding weather and climate								
	• Demonstrate knowledge of a wide range of atmospheric phenomena and their								
	roles in affecting weather and climate on local, regional, continental, and global								
	scale								
	• Demonstrate knowledge of a variety of mesoscale and small-scale at	mospheric							
	phenomena, including tropical storms, severe thunderstorms, and tornad	oes							
UNIT	CONTENT								
Ι	Introduction to atmosphere	6							
	Elementary ideas of atmosphere – meteoroids, hydrosphere, cry								
	sphere, sea breeze – land breeze – Difference between weather, climate,								
	and seasons – The Earth Orbit around the sun – climate.								
	and seasons – The Earth Orbit around the sun – chinate.								
II	Measuring the weather	6							
	Clouds – types of clouds – Atmospheric pressure – Clouds –								
	Humidity – Visibility - Surface Observation – Upper Air Observatory –								
	Warm rain – Artificial rain.								
III	Weather Systems	6							
	Thunder clouds & Hazards – Aviation hazards due to thunderstorms								

	 Cyclones – Cyclones genesis & dissipation – Cyclone structure – Anticyclones. 	
IV	Climate and climate change Climatic classifications – climate – Causes of Climate change – Mechanisms of Climate Change – Acid rain – Pollution – Atmospheric Pressure.	6
V	Basics of weather forecasting Weather – Fore casting – Numerical Weather Prediction (NWP) – Weather Observation – Weather Analysis and Forecasting – Metrological Analyses – Types of Analyses.	6

 Metrology and Weather – C.Rangannathan, forms Director , India metrological Department.

Web Resources:

https://www.youtube.com/user/NWSNHC

weather.gov/wrn/intellectualdisabilities

Course Outcomes:

On completion of the course the learner will be able

CO 1: Students can demonstrate knowledge of the typical vertical variation of the basic variables used to quantify the atmospheric state, including temperature, pressure, humidity, winds, and natural and anthropogenic particles

CO 2: To basic techniques used by meteorologists (and other scientists) to gather and interpret atmospheric data

CO 3: To learn of climate and climate change, together with the possible influences that humans have on diverse climate phenomena

CO 4: To knowledge of the typical vertical variation of the basic variables used to quantify the atmospheric state, including temperature, pressure, humidity, winds, and natural and anthropogenic particles

CO 5: To meteorologists (and other scientists) to gather and interpret atmospheric data

Mapping of COs with POs & PSOs:

CO/PO	PO									
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S
CO2	S	М	S	М	М	S	S	S	S	S
CO3	S	S	М	S	S	S	S	S	S	S
CO4	S	S	S	М	S	М	S	S	S	S
CO5	S	S	S	S	S	S	S	S	М	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-IV / Non Major Elective II	REMOTE SENSING AND GIS	Course Code: PUE2
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	 K-1 Acquire/Remember K-2 Understand K-3 Apply K-4 Analyze K-5 Evaluate K-6 Create 					
Course Objectives	 Apply the concepts of Photogrametry and its applications such as det of heights of objects on terrain. Understand the basic concept of Remote Sensing and know about diff of satellite and sensors. Illustrate Energy interactions with atmosphere and with earth surface Interpretation of satellite and top sheet maps Understand different components of GIS and Learning about map procoordinate system Develop knowledge on conversion of data from analogue to digital at with GIS software. 	Ferent types be features, jection and				
UNIT	CONTENT HOUR					
Ι	Remote Sensing: Definition and Types: Aerial, Satellite and Radar, Development of Space Programmes - History and Organization Associated with Remote Sensing in India and in other Countries.	6				
Π	Remote Sensing: Sources of Energy, Electromagnetic Radiations (EMR) Atmospheric Windows, Energy Interaction with Atmosphere and Earth, Types of Platforms, Active and Passive Remote Sensing Methods, Ideal Remote Sensing Systems.	6				
III	Fundamentals of Aerial Remote Sensing: Components of Aerial Camera, Types of Aerial Photographs, Marginal Information of Aerial Photographs, elements of Photo Interpretation.	6				

IV	Fundamentals of Satellite Remote Sensing: Types of Satellites:	
	Geostationary and Sun-synchronous Satellites, Resolution: Spatial, Spectral, Radiometric and Temporal, Types of Data Products, Marginal Information of Satellite Images.	6
V	Geographical Information Systems (GIS): Meaning - Developments- Raster and Vector data-Data integration-Global positioning system (GPS) Advantages and Limitations of GIS and GPS.	6

- 1. Barret, E.C. and Curtie L.F. (1990): Introduction to Environmental Remote Sensing, Chapman and Hall, London.
- Cambell, James B. (1987): Introduction to Remote Sensing, The Guilford Press, New York.
- Lillesand, T. M. and Kieper (1987): Remote Sensing and Image Interpretation, John Willy and Sons, New York

Reference Books

- Lueder, D.R. (1959): Aerial Photographic Interpretation, McGraw Hill Book, Co., New York
- 2. Wolf, P.R. (1974): Elements of Photogrammetry, McGraw Hill, New York

Course Outcomes:

On completion of the course the learner will be able

CO 1: Understand the concepts of Photogrametry and compute the heights of objects

CO 2: Understand the principles of aerial and satellite remote sensing, Able to comprehend the energy interactions with earth surface features, spectral properties of water bodies .

CO 3: Understand the basic concept of GIS and its applications, know different types of data representation in GIS

CO 4: Understand and Develop models for GIS spatial Analysis and will be able to know what the questions that GIS can answer are

CO 5: Apply knowledge of GIS software and able to work with GIS software in various application fields

Mapping of COs with POs & PSOs:

CO/PO	РО						PSO			
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	S	S	S	S	S	S	S
CO2	S	S	М	S	S	S	S	S	М	S
CO3	S	S	М	S	S	S	S	S	S	S
CO4	S	S	М	S	S	S	S	S	S	S
CO5	S	S	М	S	S	S	М	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester - IV /	ASTROPHYSICS	Course Code: PUS1
Skill Based Elective –I		
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	 K-1 Acquire/Remember K-2 Understand K-3 Apply K-4 Analyze K-5 Evaluate K-6 Create To impart an understanding of the great number of diverse pheno Universe through Demonstrate an understanding Stars. Establish competence in focuses areas of astrophysical theory an experi- Student can describe the differences in the life cycles of low vs high-n Student can describe stellar remnant and the role of degeneracy in for remnants. Demonstrate a fundamental understanding of the Solar System. 	riment. nass stars
UNIT	CONTENT	HOURS
I	ELEMENTS OF SPACE DYNAMICS Man's quest for space - the energy requirements - Rocket propulsion	6
Π	THE HEART OF THE SOLAR SYSTEM Vital statistics of the Sun - the solar photosphere - the Fraunh offer lines - structure of solar atmosphere - the solar interior - Sunspots and solar activity - other features of the solar activity - Radio radiation of the disturbed Sun	6
III	SMALL BODIES IN THE SOLAR SYSTEM Asteroids - Meteorites - Comets as members of the Solar system - Physical properties of comets - Origin and evolution of comets - Space studies of comets – Meteors.	6

IV	OUR HOME:	6
	Gross properties - internal structure - the terrestrial atmosphere -	
	the Earth's magnetic field - motions - Solar terrestrial relations - the	
	Earth in space - atmospheric circulation in the troposphere.	
V	Galaxies	6
	Introduction-General structure of the galaxy – general region and	
	the nucleus the galactic disc the galactic halo-the mass of the galaxy-	
	continuous radio emission in the galaxy-black holes.	

- Astrophysics of the Solar System KD Abhyankar, University press pvt. Ltd., Hyderabad, 1999
- 2. An Introduction To Astrophysics- BaidyanathBasu (unit v)

SECTION UNIT

- 1. 1 3.61 I
- 1. 4.1 4.10 II
- 2. 9.1 9.11 III
- 3. 5.1 5.9, 6.1 6.6 IV
- 4. 15.8,16.1,16.7,16.8,16

Web Resources :

http://www.physorg.com/space-news

http://www.newscientist.com/section/space

Course Outcomes:

On completion of the course the learner will be able

CO 1: Become familiar with nuclear particles and different particle accelerators. Student

is expected to know the working of different accelerators.

CO 2: Have Peripheral ideas about astronomy and astrophysics

CO 3: Student describe all of the major structures of the Solar System.

CO 4: Student can describe the history of the Solar System.

CO 5: Atmospheres of objects in the solar system.

CO/PO	O PO PSO									
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	S	S	S	S	М	S	S
CO2	S	S	М	S	S	S	S	М	S	S
CO3	S	S	М	S	S	S	S	S	S	S
CO4	S	S	М	S	S	S	S	М	S	S
CO5	S	S	М	S	S	S	S	М	М	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-IV /	SPACE SCIENCE	Course Code: PUS1
Skill Based Elective –I		
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level Course Objectives	 K-1 Acquire/Remember K-2 Understand K-3 Apply K-4 Analyze K-5 Evaluate K-6 Create To Identify galaxy types. To Illustrate the Sun's location in the Milky Way. To Describe the history of the universe as explained by the big bang theory Explain Earth's motions in space: rotation and revolution. Explain how stars are born. 	у.					
UNIT	CONTENT HOURS						
Ι	Universe: Planets - interior planets - exterior planets - crust, mantle and core of the earth - different - region of earth's atmosphere - rotation of the earth - magnetosphere - Van Allen belts - Aurora.	6					
II	Comets, Meteors, Asteroids: Composition and structure of comets - 6 periodic comets – salient features of asteroids, meteors and its use						
III	Sun: Structure of photosphere, chromosphere, corona - sunspots - solar 6 flares - solar prominences - solarpiages - satellites of planets -structure, 6 phases and their features of moon. 6						
IV	Stars: Constellations - binary stars - their origin and types star clusters 6 globular clusters - types of variable stars - types of galaxies. 6						
V	Origin of Universe: Big bang theory - pulsating theory - steady state theory – composition of universe expansion	6					

- 1. K.D. Abyankar, Astrophysics of the solar system, University press, India (1999)
- 2. BaidyanathBasu, Sudhindra Nath Biswas AndTanuka Chattopadhyay, An Introduction To Astrophysics, Prentice Hall Of India, New Delhi (2010)

Book for Study:

- 1. Prof. P. Devadas, The fascinating Astronomy, Devadas Telescopies, Chennai
- 2. R.P. Singhal, Elements of Space Physics, PHI, (2009)

Web Resources :

http://www.physorg.com/space-news

http://www.newscientist.com/section/space

Course Outcomes:

On completion of the course the learner will be able

CO 1: Demonstrate knowledge and understanding of the structure and function of earth systems and the major interactions among them.

CO 2: Outline the formation of the Earth and the solar system and explain the process of the earth's evolution, with emphasis on geologic time, plate tectonics, weathering and erosion, freshwater systems, oceans, climate and climate change.

CO 3: Demonstrate understanding of the origin and evolution of the universe as well as the birth and death of stars.

CO 4: Discuss the human impact on geological resources and the sustainable use of mineral resources.

CO 5: Discuss the importance of recent developments and applications in earth and planetary science.

CO/PO	PO					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	S	S	S	S	М	S	S
CO2	S	S	М	S	S	S	S	S	S	S
CO3	S	S	М	S	S	S	М	S	S	S
CO4	S	S	М	S	М	S	S	S	М	S
CO5	S	S	Μ	S	S	S	М	S	S	S

- S Strongly Correlated
- M Moderately Correlated

W-Weakly Correlated

Semester -V / Core Course VII	OPTICS / III Physics	Course Code: PUG
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	 K-1 Acquire/Remember K-2 Understand K-3 Apply K-4 Analyze K-5 Evaluate K-6 Create 	
Course Objectives	 To familiarize the fundamental laws concerning reflection interference, diffraction, polarization, spectrum and Optical Instrume The main objective of this subject is to aware the students about of optics. First unit of deals with the Fourier analysis and Fourier transformation The second deals with the matrix method in order to exp phenomenon. The third unit describes the Phenomenon like interference phenomenomenomenomenomenomenomenomenomenom	ents. of waves and on. lain various
UNIT	CONTENT	HOURS
Ι	Geometrical optics: Spherical aberration - Spherical aberration of a thin and thick lens –Methods of reducing Spherical aberration – Coma – Aplanatic surface – Astigmatism – Curvature of the field – Meniscus lens – Distortion – Chromatic aberration - Chromatic aberration in a lens – Circle of least Chromatic aberration – Achromatic lenses.	18
Π	Interference: Air wedge – Newton's rings – Haidinger's fringes – Brewster's fringes – Michelson Interferometer and its applications – Fabry- Perot Interferometer – Interference filter – Stationary waves in light – Colour photography (qualitatively) – Holography – Construction and reconstruction of a hologram – Applications.	18

TIT	Diffusation: Encanalize diffusation Diffusation at a (1) simular	10
III	Diffraction: Fresnel's diffraction – Diffraction at a (1) circular	18
	aperture (2) Straight edge (3) narrow wire – Fraunhofer diffraction at a	
	single slit – Double slit – Missing orders in a Double slit, Diffraction	
	pattern - Grating (theory) - Oblique incidence - Overlapping of	
	spectral lines - Resolving power - Rayleigh's criterion of resolution-	
	Resolving power of a Telescope and Grating – Dispersive power and	
	resolving power of a grating.	
IV	Polarization: Nicol prism – Nicol prism as an analyzer and	18
	polarizer – Huygens's explanation of Double refraction in uniaxial	
	crystals – Double Image polarizing prisms – Elliptical and Circularly	
	polarized light – Production and detection – Quarter wave and half	
	wave plates – Babinets compensator – Optical activity – Fresnel's	
	explanation of optical activity – Laurent's Half shade polarimeter.	
V	Optical Instruments: Microscopes – Simple Microscope	18
	(Magnifying glass) - Compound Microscope - Ultra-Microscope -	
	Eyepieces - Huygen's Eyepiece - Ramsden'sEyepiese — Comparison	
	of Eyepieces – Telescope – Refracting astronomical telescope – Abbe	
	Refractometer – Pulfrichrefractometer - Prism binoculars.	
		~
VI	ANY THREE:	Group
	Study of working of Kellner's eyepiece	Discussion
	Pulofrich Refractometer	
	Determination of Cauchy's Constant	
	Liplich Polarimeter	

 Dr. N. Subramaniyam, Brijlal and Dr.M.N. Avathanulu, *Optics*,S. Chand &Co. Pvt.Ltd.25 threvised edition, New Delhi ,2012.

Reference Books:

- 1. Singh & Agarwal, *Optics and Atomic Physics*, PragatiPrakashan Meerut, Nineth edition, 2002.
- 2. A.B. Gupta, *Modern Optics*, Books and allied (P) Ltd, Kolkata, First edition, 2006.
- 3. AjoyGhatak, Optics, (TMH), New Delhi, Fourth edition, 2009.
- 4. Arial Lipson, Stephen G.Lipson and Hentry Lipson, *Optical Physics*, Cambrige, Fourth edition, 2011.
- 5. Schaum's outlines, Optics, Tata McGraw Hill, 2011.

Web Resources:

- 1. https://micro.magnet.fsu.edu/optics/webresources/index.html
- 2. <u>https://spie.org/education/education-outreach-resources/online-resources?SSO=1</u>

Course Outcomes:

On completion of the course the learner will be able

CO 1: Understand the physics behind various phenomenons in wave and optics.

CO 2: Understand various phenomenons and the cause or origin of them.

CO 3: Explain the relationship in between various optical phenomenons with the Fourier series and matrix.

CO 4: Understand various natural phenomenons which is happening in their surroundings.

CO 5: Explain the relationship in between various optical phenomenons.

CO/PO	PO					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	М	S	S	S	S	S	S
CO2	S	S	М	S	S	S	М	М	S	S
CO3	S	S	М	S	S	S	М	S	S	S
CO4	S	S	М	S	S	S	S	М	М	S
CO5	S	S	М	М	S	S	S	S	М	S

Mapping of COs with POs & PSOs:

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester -V /	ATOMIC AND MOLECULAR	Course Code: PUH
Core Course VIII	PHYSICS	
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	 K-1 Acquire/Remember K-2 Understand K-3 Apply K-4 Analyze K-5 Evaluate K-6 Create 	
Course Objectives	• The purpose is to understand the outgrowth of the structure, extra nuclea atom and origin of the spectra.	ar part of the
	 To learn the impact of magnetic field on spectra. 	
	• To study the concept of photo electric cell.	
	• To calculate the Zeeman effect and the lande g' factor.	
	• To outline the selection rules for rotational and vibrational spectra.	
UNIT	CONTENT	HOURS
Ι	Cathode and Positive Ray : Production and Properties of Cathode	18
	rays - Electronic charge - Millikan's oil- drop method - Production	
	and properties of positive rays - Thomson's parabola method -	
	Aston's, Bainbridge's mass - spectrographs (e/m) - Mass defect and	
	Packing Fraction.	
Π	Atom model : Vector atom model - Quantum numbers associated with vector atom model - Pauli's exclusion principle - Electronic configuration of elements and periodic table - The Stern and Gerlach experiment - Zeeman effect - Experimental arrangement for the normal Zeeman effect - Larmor's theorem - Quantum mechanical explanation of the normal Zeeman effect - Anomalous Zeeman effect- Paschen Back Effect – Stark effect.	18
III	X-Rays : X-rays - production - detection and properties -Bragg's law - Bragg's X-ray spectrometer - Laue's experiment - The Powder crystal	18

	method –Rotating crystal method - Characteristics of X-ray spectrum - Moseley's law - Compton effect - Determination of wavelength - Symmetry operations and elements of Symmetry.	
IV	Photoelectric Effect and Free Electron theory of metals : Photoelectric effect - Lenard's experiment - Richardson and Compton experiment - Experimental investigations on the photoelectric effect - Laws of photoelectric emission - Einstein's photoelectric equation - Experimental verification - Millikan's experiment - Photoemissive cell - Photovoltaic cell - Photoconductive cell.	18
V	Molecular Physics : Theory of the pure rotational spectrum of a molecule - Theory of the origin of the vibration - rotation spectrum of a molecule - Electronic spectra of molecules - Molecular orbital theory of Hydrogen molecule ion - Heitler-London theory of Hydrogen molecule.	18
VI	 ANY THREE: Study of principle and working of Electron Microscope Study of hyperfine structure Study and analysis of Bravais lattices and typical crystal structure Principle and function of Photomultiplier Study of Rigid rotator 	Group Discussion

- R. Murugesan, Kiruthiga Sivaprasath, *Modern Physics*, S. Chand &Co Ltd., New Delhi, 14th Revised edition, 2014.
- 2. J.B. Rajam, Atomic Physics, S. Chand & Co Ltd., New Delhi, Revised edition, 2009.

Reference Books:

- 1. Guptha Kumar Sharma J.B. Rajam, *Atomic Physics*, S. Chand & Co Ltd., New Delhi, Revised edition, 2009.
- 2. Sehgal, Chopra and Sehgal, Modern physics, Sultan Chand & Sons, New Delhi.
- 3. ArturBeiser, Shobhit Mahajan, S. Rai Choudhury, *Concepts of Modern Physics*, Sixth edition, SIE, 2009.

4. S.N .Ghoshal, Atomic Physics, S. Chand & Co Ltd., New Delhi, Revised edition, 2004.

Web Resources:

https://nptel.ac.in/courses/115/101/115101003/

https://physics.berkeley.edu/research/atomic-molecular-and-optical-physics

Course Outcomes:

On completion of the course the learner will be able

CO 1: To analyze various types of spectrography to study about the positive rays.

CO 2: Explain magneto optical properties of materials.

CO 3: To find applications of photo electrical cells and x-rays.

CO 4: They should be able to calculate the effect of an electrical field on the energy levels of the hydrogen atom.

CO 5: Students learn about electronic, rotational and vibrational energy levels of diatomic molecules.

CO/PO	PO					O PO PSO					
	1	2	3	4	5	1	2	3	4	5	
CO1	S	S	М	S	S	S	S	S	S	S	
CO2	S	S	М	S	S	S	S	S	S	S	
CO3	S	S	М	S	S	S	М	S	S	S	
CO4	S	S	М	S	S	S	S	S	S	S	
CO5	S	S	М	М	S	S	S	М	S	S	

Mapping of COs with POs & PSOs:

S - Strongly Correlated

M - Moderately Correlated

- W-Weakly Correlated
- N No Correlation

Semester-V /	ELECTRONICS	Course Code: PUI
Core Course IX		
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	 K-1 Acquire/Remember K-2 Understand K-3 Apply K-4 Analyze K-5 Evaluate K-6 Create 	
Course Objectives:	 To enable the students to understand all aspects of electronics in a comprehensive manner. This course is familiarize the students about the transistor, operationa and Digital electronics Circuit Acquire the fundamental knowledge and application of the sem Device Knowledge of the basic principles of electronic circuits operation Performance Analysis of electronic circuit 	l amplifier
UNIT	CONTENT	HOURS
Ι	Semiconductors, diodes and Bipolar Transistors Intrinsic and extrinsic semi -conductors –PN junction diode – Biasing–V-I Characteristics– Rectifiers – Half wave – full wave and Bridge rectifiers – Break down mechanisms – Zener diode- characteristics of Zener diode – Zener diode as voltage regulator-Bipolar junction transistor – Basic configurations -Relation between α and β – Characteristic curves of transistor – CB, CE mode – DC load line – DC bias and stabilization – fixed bias – voltage divider bias.	18
Π	 Amplifiers and Oscillators Single stage CE amplifier – Analysis of hybrid equivalent circuit – Power amplifiers – Efficiency of class A,B& C Power amplifier - General theory of feedback – Properties of negative feedback – Criterion for oscillations – Hartley oscillator – Colpitt's oscillator. 	18

III	Operational amplifier Operational amplifier - Characteristics – Inverting and Non- inverting amplifier – Voltage follower – Adder, Subtractor, Integrator and Differentiator circuits – Log & antilog amplifiers – Op- amp as Comparator – Filters-low, bandpass, high pass filters -A/D conversion – Successive approximation method – D/A conversion – R-2R ladder network.	18
IV	Number Systems, Logic Gates and Boolean Algebra Introduction to decimal, binary, octal, hexadecimal number systems – Inter conversions– 1's and 2's complements –Logic gates, Symbols and their truth tables – AND, OR, NOT, NAND, NOR, XOR, and XNOR – Universality of NAND and NOR gates. Boolean algebra – De-Morgan's theorems -Reducing Boolean expressions using Boolean laws – SOP forms of expressions (minterms) – Karnaugh map simplification(Four variables).	18
V	Combinational and Sequential Digital Systems Half and full adders – Half and full subtractors – Decoder(2:4 line) – Encoder (4:2 line)– Multiplexer(4:1 line) – Demultiplexer (1:4 line) - Flip flop – RS – clocked RS – T and D flip flops – JK and master slave flip flops – Counters – Four bit asynchronous ripple counter – Mod-10 counter — Synchronous counter – Ring counter - Shift registers – SISO and SIPO shift registers.	18
VI Text Books:	 ANY THREE: Analysis and Comparison of CC, CB and CE modes Principle and working of Phase Shift Oscillator Study of Counter type method in A/D and D/A conversion Simplification of Boolean Algebra using circuit analysis Analysis of Multiplexer(16:1) and Demultiplexer(1:16) Study of Up/Down Counter 	Group Discussion

1. Mehta V.K., Principles of Electronics, S. Chand and company Ltd, 2014.

- 2. A.P. Malvino, D.P. Leach, *Digital Principles and Application*, IV Edition, Tata McGraw Hill, New Delhi, 2011.
- 3. V. Vijayendran, *Digital Fundamentals*, S.Viswanathan, Printers & Publishers Private Ltd, Chennai, 2004.

Reference Books :

- 1. Theraja. B.L, Basic electronics Solid State, S.Chand and Company Ltd 2002.
- 2. Sedha R.S., A text book of applied Electronics, S.Chand& company Ltd 2002.
- 3. W.H.Gothmann, *Digital Electronics*, Prentice Hall of India, Pvt. Ltd., New Delhi 1996.
- 4. V. Vijayendran, *Digital Fundamentals*, S.Viswanathan, Printers & Publishers Private Ltd, Chennai, 2004.

Web Resources:

https://www.electronics-tutorials.ws/ https://www.altair.com/electronics/

Course Outcomes:

On completion of the course the learner will be able

CO 1: Explain the theoretical principles essential for understanding the operation of electronic circuit

CO 2: Measure the characteristics of electronic circuit and present experiment result

CO 3: Analyze electrical circuit and calculate the main parameters

CO 4: Develop Design and create simple analogue and digital electronics circuit

CO 5: Know about the multistage amplifier using BJT and FET various configuration

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	S	S	S	S	М	М	S
CO2	S	S	М	S	S	S	S	S	S	S
CO3	S	S	М	S	S	S	S	S	S	S
CO4	S	S	М	S	S	S	S	S	S	S
CO5	S	S	М	S	S	S	S	S	S	S

Mapping of COs with POs & PSOs:

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester -V /	CORE PRACTIAL III	Course Code: PUJY
Core Practial III		
Instruction Hours: 4	Credits: 4	Exam Hours: 3
Internal Marks - 40	External Marks - 60	Total Marks: 100

Course Objectives:

- To promote scientific temper and to learn physical concepts through these experiments.
- To determine the refractive index of the given small angle and biprism
- To find the Self- induction of a coil using the electrical brides.
- To determine capacitance of a capacitor by comparing the capacitances.
- To write the C program for the different applications.

LIST OF EXPERIMENTS:

(Any Twelve Experiments)

SECTION- A

- **1.** Spectrometer- i-d curve.
- 2. Spectrometer i-i' curve.
- **3.** Field along the axis of a coil determination of M.
- 4. Potentiometer -Temperature coefficient of thermistor
- 5. Ballistic Galvanometer-Absolute Determination of Mutual Inductance.
- 6. Series resonance circuits.
- 7. Parallel Resonance circuits.
- **8.** Koenig's method Uniform bending.
- 9. Spectrometer Grating-minimum deviation method
- **10.** Spectrometer Grating dispersive power.
- 11. M and H Absolute determination using deflection and vibration magnetometer.
- **12.** Potentiometer High range Voltmeter calibration.

SECTION- B

COMPUTER PROGRAMMING IN C (Any TWO)

- 1. Find the arithmetic mean.
- 2. Find the median.
- 3. Find the mode.

- 4. To fit a Straight line.
- 5. To fit a Parabola curves.
- 6. To calculate simple correlation coefficient.
- 7. To calculate Rank correlation coefficient.

Course Outcomes:

On completion of the course the learner will be able

CO 1: To understand theoretical principles of optics in the experimental method through the

determination of refractive index of the prism using the spectrometer.

CO 2: To acquire the acknowledge in electrical devices such as ammeter voltmeter, millimeter and spot galvanometer etc.,

CO 3: To understand the process of electrolysis.

CO 4: To write the application programs in "C" Language

CO 5: Calculate the result accurately and express the same with appropriate significant figures,

justified by the degree of accuracy of the instrument

CO/PO	РО					PO PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	S	S	S	S	S	S	S
CO2	S	S	М	S	S	S	S	S	S	S
CO3	S	S	М	S	S	S	S	М	S	S
CO4	S	S	М	М	S	S	S	S	М	S
CO5	S	S	М	S	S	S	S	S	S	S

Mapping of COs with POs & PSOs:

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-V /	MICROPROCESSOR	AND	"С"	Course Code: PUE3
Major Based Elective I	PROGRAMMING			
Instruction Hours: 5	Credits: 5			Exam Hours: 3
Internal Marks -25	External Marks-75			Total Marks: 100

Cognitive Level Course Objectives	 K-1 Acquire/Remember K-2 Understand K-3 Apply K-4 Analyze K-5 Evaluate K-6 Create The purpose of this course is to introduce students about the key feat implementation of C language and 8085 Microprocessor assembly. To understand the basic concept of microprocessor To understand techniques for faster execution of instructions and improve operation and performance microprocessors. To Learn the fundamental programming concept and methodologies. To understand the basic architecture of intel 8085 microprocessor. 	
	 To understand the basic dreintecture of inter ooos interoprocessor. To practice the fundamental programming methodologies in c programming language. 	
UNIT	CONTENT	HOURS
Ι	Basics of Digital Computer Basic components of a digital computer - Evolution of microprocessors - Important INTEL microprocessors - Hardware, Software and Firmware - Memory - Semiconductor memories - RAM,ROM - Flash memory - CCD memory - Cache memory - Buses.	18

	I/O and Machine control group.	
III	Assembly Language Programming Addition - subtraction - multiplication -division of two 8- bit numbers - Finding the largest and smallest number in a data array-Arranging a list of numbers in ascending or descending order-complement – multibyte addition and subtraction –decimal addition - subtraction.	18
IV	 Introduction To C Basic Structure of C Programs – Character set – C tokens - Keywords and identifiers – constants – variables – Data types – declaration of variables – Assigning values to variables – Symbolic constants – Operators and Expressions Arithmetic operators - Relational, Logical and Assignment operators, Increment and Decrement operators – Conditional operator, Bitwise and Special operators– Arithmetic Expressions – Mathematical functions. 	18
V	Preliminaries and Functions Data input and output – getchar, putchar, scanf, printf, gets, puts functions – Decision making and branching –if, ifelse, else if ladder, switch, break, continue, goto – Decision making and looping – while, do while, for, nested loops –Arrays (one-, two- and multi-dimensional arrays)- Declaration, Initialization of arrays.	18

- B. Ram Fundamentals of Microprocessors and Microcontrollers–Dhanpat Rai Publications (P) Ltd., New Delhi, 2013.
- E. Balagurusamy Programming in ANSI C Tata McGraw Hill Education Private Limited, New Delhi,2012.

Reference Books:

- 1. R. S.Gaonkar- Microprocessor Architecture, Programming, and Applications with the 8085, Penram International Publishing (India) Private Limited, Mumbai, 2007.
- K. R. Venugopal and S. R. Prasad Programming with C Tata McGraw-Hill Publishing Company Limited, New Delhi, 2002.

Web Resource:

https://onlinecourses.nptel.ac.in/noc19_cs44/preview. https://www.edaboard.com/threads/getting-started-with-microprocessor-programming-inc-c.378550

Course Outcomes:

On completion of the course the learner will be able

CO 1: Write programs to run on 8085 microprocessor

CO 2: Understand and device techniques for faster execution of instruction, improve speed of operations.

CO 3: Understand microprocessor and its advantage.

CO 4: Describe the fundamental components of a C program, e.g source file, header file, mainfunction, functions and librarie.

CO 5: Explain and apply fundamental syntax rules for identifies, declarations, expressions, statements and functions.

Mapping of COs with POs & PSOs:

CO/PO			РО					PSO		
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	S	S	S	S	S	М	S
CO2	S	S	М	S	S	S	S	S	S	S
CO3	S	S	М	S	S	S	S	S	М	S
CO4	S	S	М	М	S	S	S	S	S	S
CO5	S	S	М	S	S	S	М	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-V /	Principles of Information	Course Code: PUE3
Major Based Elective I	Technology	
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level Course Objectives	 K-1 Acquire/Remember K-2 Understand K-3 Apply K-4 Analyze K-5 Evaluate K-6 Create To Provide the Basic Concepts in Information Technology To understand Software and Operating system. To Learn the fundamental of Data base management System. To understand the basic of Networking. To practice the application of Technology. 	
UNIT	CONTENT	HOURS
Ι	Basics of Digital Computer System:Introduction to Computer – Classification of DigitalComputer System – Computer Architecture – Memory Units– Auxiliary Storage Devices – Input and Output Devices.	18
Π	Software: Introduction to Computer Software – Operating System – Programming Languages–General Software Features and trends.	18
III	Database Management Systems: Database Management Systems – Data Processing – Introduction to Database Management System – database design.	18

IV	Telecommunication:	18
	Introduction to Telecommunication – Networking –	
	Communication System–Distributed System – Internet –	
	Intranet.	
V	Multimedia tools:	18
	Multimedia tools – Virtual Reality – E-Commerce –	
	Data warehousing – Data Mining –Applications;	
	Geographical Information System-Computer in Business,	
	Industry, Home, Education and Training.	

1. Fundamentals of Information Technology, Alexis Leon and Mathews Leon, Vikas Publishing HousePvt.Ltd,2009

Reference Book

- 1. Henry C. Lucas, Jr., Information Technology for Management–Mc Graw Hill(Part–III).
- 2. Williams, Sawyer, Hutchinson, Using Information Technology–Mc Graw Hill.

Web Resources

https://www.txcte.org/course-binder/principles-information-technology https://www.icevonline.com/curriculum/business-marketing-finance-itmedia/courses/principles-information-technology

Course Outcomes:

On completion of the course the learner will be able

CO 1:Applying the Basic Concepts in Information Technology

CO 2: Understand Software and Operating system of programming language.

CO 3: Using the fundamental of Data base management System in database design.

CO 4: Design the basic Network.

CO 5: Practice the application of Technology.

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	S	S	S	М	S	М	S
CO2	S	S	М	S	S	S	М	S	S	S
CO3	S	S	М	S	S	S	М	S	S	S
CO4	S	S	М	S	S	S	М	S	S	S
CO5	S	S	М	S	S	S	М	S	S	S

- **S** Strongly Correlated
- **M** Moderately Correlated

W-Weakly Correlated

Semester - V / Skill Based Elective -II	BIOMEDICAL INSTRUMENTATION	Course Code: PUS2
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level Course Objectives	 K-1 Acquire/Remember K-2 Understand K-3 Apply K-4 Analyze K-5 Evaluate K-6 Create To understand the underlying physical principles of the biological phenom To gain the knowledge about the design and functioning of various instruments. To introduce an fundamentals of transducers as applicable to physiology To explore the human body parameter measurements setups To make the students understand the basic concepts of forensic techniques 	biomedical
UNIT	CONTENT	HOURS
I	Human Physiological System Different systems of human body –skeletal system –circulatory system-	18
	respiratory system –digestive system –excretory system –regulatory system –reproductive system –muscular system –components of bio medical instrument system –types of electrodes and transducers(basic ideas).	
II	Biopotential Recorders Characteristics of the recording system –electrocardiography(ECG)- ECG lead configuration –ECG recording set up – electroencephalography(EEG)-anatomy of the brain –placement of electrodes –recording setup –analysis of EEG.	18

III	Electromyography(EMG) -recording setup –determination of conduction velocities in motor nerves –electroretinography (ERG) – Recording Techniques- electrooculography (EOG)- records with high accuracy.	18
IV	Physiological Assist Device Introduction- pacemakers –types of pacemakers –methods of stimulation- external and internal pacemaker-different modes of operation – ventricular synchronous –ventricular inhibited pacemaker (demand pave maker)-defibrillators –types of defibrillators - external and internal defibrillators –heart lung machine –kidney machine- dialysis-hemodialyser.	18
V	Specialized Medical Equipment 2hrs Digital thermometer - X-RAY machine - block diagram- radiography and fluoroscopy-application of X-RAY examination –elements of bio-telemetry system – single channel telemetry system.	18

1. Biomedical Instrumentation -Dr.M.Arumugam (Anuratha Agencies).

Reference:

1. Biomedical Instrumentation and Measurements –Leslie Cromwel, Fred J. Weibell, Ericha. Pfeiffer, Prientice Hall of India, Second Edition.

Web Resources:

https://www.sciencedirect.com/science/article/pii/B9780128183182000039 http://smegnr.cpas.ac.in/department-of-biomedical-instrumentation/

Course Outcome

On completion of the course the learner will be able

CO 1: Study the function of bioelectric potentials and its importance and understand the different

types of waveforms generated by organs.

CO 2: Learn the fundamental knowledge of the electrodes to sense bio potentials.

CO 3: Learn the basic concepts and interpretations of ECG and BP.

CO 4: Understand the anatomy of the nervous system and its signal measurements (EMG, CAT).

CO 5: Analyze and understand the applications of the imaging techniques transmission(x- ray and ultrasound)

CO/PO			РО					PSO)	
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	М	S	S	S	М	М	S
CO2	S	S	М	М	S	S	S	S	М	S
CO3	S	S	М	S	S	S	S	S	S	S
CO4	S	S	М	S	S	S	М	М	М	S
CO5	S	S	М	S	S	S	М	М	М	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-V /	MEDICAL PHYSICS	Course Code: PUS2
Skill Based Elective -II		
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	 K-1 Acquire/Remember K-2 Understand K-3 Apply K-4 Analyze K-5 Evaluate K-6 Create 	
Course Objectives	 To understand the basics about the biological systems in our body, the and the diagnostic devices. To give basic ideas about how multimedia evidences are useful investigation To Understand the knowledge in recent trends of measuring bio-signals To provide knowledge on preparation, Characterization and use of bid metals and non metals for bio implant application. Designed to provide the knowledge for use of different laser spectrols in bioanalysis. 	l in crime
UNIT	CONTENT	HOURS
I	Basic Anatomical Terminology- Modeling and Measurement – Forces on and in the Body – Physics of the Skeleton – Heat and Cold in Medicine- Energy work and Power of the Body	6
Π	Pressure system of the body- Physics of Cardiovascular system- Electricity within the Body – Applications of Electricity and Magnetism in Medicine	6
III	Sound in medicine- Physics of the Ear and Hearing- Light in medicine- Physics of eyes and vision.	6
IV	X-rays- Production of X-rays- X-ray spectra- continues spectra and	6

	characteristic spectra- Coolidge tube- Electro Cardio Graph (ECG) - Block diagram- ECG Leads- Unipolar and bipolar-ECG recording set up. 1982	
V	Electro Encephalo Graph (EEG) - origin- Block diagram- Electro Myogragh (EMG) – Block diagram- EMG recorder- Computer Tomography (CT) principle- Block diagram of CT scanner.	6

1. Medical Physics – John R. Cameron and James G.Skofronick, 1978, John Willy & Sons.

Reference Book

1. Bio medical instrumentation – E D II, Dr M. Arumugam, Anuradha Agencies 1997.

Web Resources:

https://aapm.onlinelibrary.wiley.com/journal/24734209

https://www.medicalphysics.org/

Course Outcomes:

On completion of the course the learner will be able

CO 1: To learn the internal architecture and working principle of various instruments used in medical field.

CO 2: Students will be able to use Laser, Ultra sound and microwaves for different diagnosis and Therapeutic applications

CO 3: To design and develop a new abutments that may be comparable to currently available esthetic implant abutments.

CO 4: To make the students to familiarize physical design , Maintenance of different biomedical instrument used in medical field

CO 5: The student can able to design different laser spectrometers and devices for spectroscopic analysis and imaging of cells and tissues.

CO/PO	PO					PSO PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	S	S	S	М	S	S	S
CO2	S	S	М	S	S	S	М	S	S	S
CO3	S	S	М	S	S	S	S	S	S	S
CO4	S	S	М	S	S	S	М	S	S	S
CO5	S	S	М	S	S	S	S	М	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-V /	STATISTICS	Course Code: PUS2
Skill Based Course -III		
Instruction Hours: 2	Credits: 2	Exam Hours: 2
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	 K-1 Acquire/Remember K-2 Understand K-3 Apply K-4 Analyze K-5 Evaluate K-6 Create 						
Course Objectives	 statistical data which help students to acquire knowledge in these to Demonstrate knowledge of probility and the standard statistical dis Demonstrate knowledge of fixed-sample and large-sample properties of point and intervals estimates. Demonstrate the ability to apply perform complex data manag analysis. 	 statistical data which help students to acquire knowledge in these topics. Demonstrate knowledge of probility and the standard statistical distribution Demonstrate knowledge of fixed-sample and large-sample statistical properties of point and intervals estimates. Demonstrate the ability to apply perform complex data management and analysis. Demonstrate understanding of how to design experiments and surveys for 					
UNIT	CONTENT	HOURS					
Ι	Arithmetic Mean: Formulae for calculating arithmetic mean in a frequency distribution-Merits and Demerits Simple Problems (ungrouped data, grouped data with equal class interval).	6					
II	Median: Concept: Merits and Demerits-Simple Problems (ungrouped data, grouped data with equal class interval).	6					
III	Mode : Concept: Merits and Demerits-Simple Problems (ungrouped data, grouped data with equal class interval).	6					
IV	Prediction using curve fitting &correlation analysis: Curve fitting – methods of least square – fitting a straight line, parabola. Correlation –Rank correlation – Coefficient of Correlation.	6					

V	C Programming	
	1. Find the arithmetic mean.	6
	2. Find the median.	
	3. Find the mode.	
	4. To fit a Straight line.	
	5. To fit a Parabola curves.	
	6. To calculate simple correlation coefficient.	
	7. To calculate Rank correlation coefficient.	

- 1. 1.Study Material Prepared by Dept. of Physics.
- 2. V.Rajaraman, Computer Oriented Numerical Methods.

Reference Books:

- 1. Gupta and Kapur, Fundamentals of Mathematical Statistics.
- 2. E.Balagurusamy, C Programming.

Web Resources:

https://www.statistics.com/

https://www.merriam-webster.com/dictionary/statistics

Course Outcomes:

On completion of the course the learner will be able

CO 1: Organize, manage and present data.

CO 2: Analyse statistical data using measures of central tendency dispersion and location

CO 3: Analyse statistical data graphically using frequency distribution

- CO 4: Use discrete and continuous probability distributions, including mean, median, mode
- CO5: cumulative frequency distribution.

CO/PO	РО					PO PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	М	М	М	S	S	S	S	S	М	S
CO2	S	S	М	S	S	S	S	S	S	S
CO3	S	S	М	S	S	S	S	S	S	S
CO4	S	S	М	S	S	S	М	S	S	S
CO5	S	S	М	S	S	S	S	М	М	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-V / Skill Based Course -III	STATISTICAL INFERENCE	Course Code: PUS2
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level Course Objectives	 K-1 Acquire/Remember K-2 Understand K-3 Apply K-4 Analyze K-5 Evaluate K-6 Create To bring out the subjects related with hypothesis and simple problem Demonstrate knowledge of small sample test 	
	 Demonstrate knowledge of fixed-sample and large-sample statistics of point and intervals estimates. Demonstrate understanding of how to test significance of observed sa To calculate and apply measures non-parametric test 	
UNIT	CONTENT	HOURS
Ι	Statistical hypothesis – simple and composite, Null and Alternative hypothesis, Critical region, Level of significance, type of errors and Power of test (simple problems). Steps involved in testing of hypothesis. Neymann Pearson Lemma (statement and proof).	18
II	Large sample test – Test for single proportion, difference between proportions, single mean, difference between means and difference between standard deviation.	18
III	Small sample test – student's 't' test – test for single mean, difference between means, paired 't' test and observed sample correlation co-efficient.	18

Snedecor's F test – test for equality of two population variance –	18
Testing the significance of an observed multiple correlation co-efficient,	
observed sample correlation ratio and linearity of regression (concepts	
only).	
Non-parametric test - Chi-square test - Independence of attributes	18
and goodness of fit. One sample tests - Sign test and Run test for	
and goodness of fit. One sample tests – Sign test and Run test for randomness, Two sample tests – Sign, median and Mann Whitney U-	
	Testing the significance of an observed multiple correlation co-efficient, observed sample correlation ratio and linearity of regression (concepts only).

- 1. Gupta.S.C. and Kapoor V.K., Fundamentals of Mathematical Statistics, Sultan Chand & Sons.
- 2. Rohatgi.V.L, "An introduction to probability theory and Mathematical Statistics", Wiley Eastern limited.

Book for Reference:

- 1. Radhakrishna Rao C., "Linear Statistical Inference and its Applications", Wiley Eastern limited.
- 2. Lehmann.E.L, Testing of Statistical Hypothesis, John Wiley.
- 3. Gibbons.J.D , Non Parametric Statistical Inference, Duxbury

Web Resources:

https://www.statistics.com/

https://www.merriam-webster.com/dictionary/statistics

Course Outcomes:

On completion of the course the learner will be able

CO 1: Analyse the subjects related with hypothesis and simple problem.

CO 2: Demonstrate the knowledge of small sample test

CO 3: Applying the knowledge of fixed-sample and large-sample statistical properties of point.

CO 4: To Analyses the intervals estimates.

CO 5: Understanding of how to test significance of observed sample.

CO/PO	PO					PO PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	S	S	S	М	М	S	S
CO2	S	S	М	S	S	S	М	М	S	S
CO3	S	S	М	S	S	S	М	S	S	S
CO4	S	S	М	S	S	S	М	М	М	S
CO5	S	S	М	S	S	S	М	S	М	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

N – No Correlation

\

Semester-VI /	NUCLEAR PHYSICS	Course Code: PUK
Core Course-XI		
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level Course Objectives	 K-1 Acquire/Remember K-2 Understand K-3 Apply K-4 Analyze K-5 Evaluate K-6 Create To emphasize the understanding of nuclear forces and models, element and Accelerators. To understand the properties of nucleus reactivity. To gain knowledge on particle detectors and accelerators. To describe radioactivity and related phenomena. 	ary particles
	• To understand the fission and fusion reaction and their applications.	
UNIT	CONTENT	HOURS
Ι	General Properties of Nuclei and Nuclear Models Constituents of nuclei-Classification of nuclei - Nuclear mass and binding energy - Binding energy and stability of nucleus, Mass defect and Packing fraction, Binding fraction Vs Mass number curve - Nuclear size - Nuclear spin-nuclear energy levels - Nuclear magnetic momentParity of nuclei - Nuclear forces. Nuclear Models - Liquid drop model, Semi- empirical mass formula - Shell model- Salient features of shell model.	18
Π	Radioactivity Radioactive decay law-Half life and Average life - Activity or strength of a radio – sample - Successive transformation - Radioactive chain- Radioactive equilibrium - Radioactive dating - α - decay - Geiger- Nuttall law - Tunnel effect - Gamow's theory of α decay - β -decay Neutrino hypothesis - Properties of neutrino - Gamma rays-origin of the gamma rays - Internal conversion.	18

III	Particle Accelerators and Detectors	18
	Linear accelerator – Cyclotron – Betatron - Electron synchrotron -	
	Accelerators in India. Radiation Detectors - Ionisation Chamber -	
	Proportional counter - G.M. Counter-Cloud chamber - Scintillation	
	counter - Solid state track detector –Semiconductor detector.	
IV	Nuclear Reactions and Nuclear Reactors	18
	Nuclear reactions - Types of nuclear reactions - Conservation laws	
	in nuclear reactions -Energetic of nuclear reactions - Kinematics of	
	nuclear reactions -Threshold energy of nuclear reactions - Solution of the	
	Q- value equation - Cross-section of nuclear reactions. Nuclear fission -	
	fission of light nuclei - Prompt and delayed neutrons - Neutron speed,	
	classifications - Nuclear chain reaction - Nuclear reactor - Types of reactor	
	-Fission bomb - Nuclear power in India- Fusion-Thermonuclear reaction -	
	Hydrogen bomb -Possibility of fusion reactor.	
V	Elementary Particles	18
	Classification of elementary particles – Pions and Muons - K-mesons	
	- Hyperons- Conservation laws - Exact laws - Approximate conservative	
	laws- Fundamental interactions - Antiparticles -Resonance particles -	
	Hyper-nucleus - Symmetry classification of elementary particles - Quark	
	model.	
VI	ANY THREE:	
	Collective Model of Nucleus	Assignment
	Comparison of Alpha, Beta and Gamma decays	
	Study of nuclear reactions and thermionic emission	
	Comparison of all elementary particles	

- 1. M L Pandya& R. P .S .Yadav, *Elements of Nuclear Physics*, Kedaar Nath& Ram Nath ,2000.
- 2. S. N. Ghoshal, Nuclear Physics , S. Chand & Co., Edition ,2003. -unit-(IV,III)

Reference Books:

- 1. K. Ilangovan, Nuclear Physics, Unit-(I,II,V).
- 2. Satya Prakash, Nuclear Physics, A Pragati Prakasan Publication, 2011.
- 3. Jahan Singh, Fundamentals of Nuclear Physics, A Pragati Publication, 2012.
- 4. D.C. Tayal, *Nuclear Physics*, Himalaya Publishing House, 2009.

Web Resources:

https://www.nature.com/subjects/nuclear-physics https://nptel.ac.in/courses/115/104/115104043/

Course Outcomes:

On completion of the course the learner will be able

CO 1: Explain nuclear properties compare crop of liquid with that of a nucleus and understand shell model.

CO 2: Distinguish between principles and working of different types of detectors, counters and accelerators.

CO 3: Describe basic radioactivity calculate half-live and understand radiation hazards.

CO 4: Explain natural and artificial transmutations, calculate Q-value of a reaction, recognize the applications of isotope

Mapping of COs with POs & PSOs:

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	S	S	S	S	М	М	S
CO2	S	S	М	S	S	S	М	М	М	S
CO3	S	S	М	S	S	S	S	S	Μ	S
CO4	S	S	М	S	S	S	S	S	М	S
CO5	S	S	М	М	S	S	S	S	М	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-VI /	CLASSICAL AND QUANTUM	Course Code: PUL
Core Course IX	PHYSICS	
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level	 K-1 Acquire/Remember K-2 Understand K-3 Apply K-4 Analyze K-5 Evaluate K-6 Create 	
Course Objectives	 To know the facts and develop a unified and logical treatment of the subject clarity and conciseness. To distinguish between 'inertia frame of reference' and 'non-inertial frame of To know how to impose constraints on a system in order to simplify the mused in solving physics problems To know what central, conservative and central-conservative forces ma understand the conservative theorems of energy, linear momentum Momentum. To know the importance of concepts such as generalized coordinates and motion 	of reference. The thods to be athematically and angular
UNIT	CONTENT	HOURS
UNIT	CONTENTFundamental Principles and Lagrangian FormulationMechanics of a particle and system of particles – Conservation laws –Constraints – Generalized coordinates – Principle of virtual work-D'Alembert's principle and Lagrange's equation – Hamilton's principle –Lagrange's equation of motion.	HOURS 18

III	Dual Nature of Matter	18
	De Broglie concept of matter waves - De Broglie wavelength - Wave	
	velocity and group velocity for the De Broglie waves - Experimental study	
	of matter waves - Davison and Germer experiment - G.P. Thomon's	
	experiment for verifying De Broglie relation - Heisenberg's uncertainty	
	Principle – Electron microscope – Gamma ray microscope.	
IV	Basics of Quantum Mechanics	18
	Basic postulates of wave Mechanics - Development of Schrödinger wave	
	equation – Time independent and dependent forms of equations –	
	Interpretation And Condition On wave function – Orthogonal and normalized	
	wave function Eigen function and eigen values - Expectation values and	
	Ehrenfest's theorem.	
V	Exactly Solvable Quantum Systems	18
	Linear harmonic oscillator – Particle in a box – Rectangular barrier potential	
	–Rigid rotator – Hydrogen atom.	
VI	ANY THREE:	Group
	Principle and Working of resonant tunneling diode	Discussion
	Study of phenomenon of quantum tunneling through Potential barrier	
	Study of classical computers and computing	
	Discussion of swing of a ball in air using Bernouille's theorem	
	Study of dynamics of motion and its relations to force	

- 1. S.L.Gupta., V. Kumar and H.V.Sharma, PragathiPrakasan, Classical Mechanics Educational Publisher, Meerut, 25th edition, 2011. UNIT-(I,II)
- 2. Murughesan, R., Modern Physics, S.Chand& Co., New Delhi, 2006.UNIT(III,IV,V)

Reference Books:

- 1. Arthur Beiser, Concept of Modern Physics: McGraw Hill Ed. V (1999).
- 2. H.Goldstein, Classical Mechanics, Narosa Book distributors, New Delhi 1980.

- 3. N.C.Rana and P.S.Joag, Classical Mechanics, Tata Mc Graw Hill, New Delhi 1991.
- 4. P M. Mathews and K. Venkatesan, A Text Book of Quantum Mechanics ,Tata Mc Graw Hill, New Delhi, 1987.

Web Resources:

https://nptel.ac.in/courses/122/106/122106034/

https://www.nature.com/articles/373469a0.pdf?origin=ppub

١

Course Outcomes:

On completion of the course the learner will be able

CO 1: After taking this course students will be able to appreciate the beauty of quantum mechanics. They will be knowing all types of representations of operators and ways to apply them in different problems.

CO 2: The most important thing students learned from this course was how to solve the hydrogen atom problem by using quantum mechanics.

CO 3: Describe and understand the motion of a mechanical system using Lagrange Hamilton formalism.

CO 4: Describe and understand the motion of the forces in non inertial systems

CO 5: Understand and explain the differences between classical and quantum mechanics.

CO/PO	PO					PO PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	М	S	S	S	М	М	S
CO2	S	S	М	S	S	S	S	S	М	S
CO3	S	S	М	S	S	S	S	S	М	S
CO4	S	S	М	S	S	S	S	S	М	S
CO5	S	S	М	S	S	S	S	S	М	S

Mapping of COs with POs & PSOs:

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester – VI /	MAJOR PRACTIAL IV	Course Code: PUMY
Core Practical IV		
Instruction Hours: 6	Credits: 5	Exam Hours: 3
Internal Marks - 40	External Marks - 60	Total Marks: 100

Course Objectives:

- To indentify the basic electronic devices like diode, transistor, led,ujt and scr.
- To observe the characteristics of diodes like PN, Zener diode.
- To Know diode as a rectifier and adding filters to see the ripple free output.
- To observe the characteristics of transistors, SCR & UJT.
- To analyze transistor amplifiers and their frequency responses

LIST OF EXPERIMENTS

SECTION – A

(Any Eight Experiments)

- 1. Regulated power supply using Zener diode Percentage of regulation.
- 2. Single stage RC coupled amplifier Transistor.
- 3. Transistor CB
- 4. Transistor CE
- 5. Half Adder and Full adder circuits using logic gates.
- 6. Half Subtractor and Full Subtractor circuits using logic gates.
- 7. NAND &NOR as Universal Gates
- 8. Emitter follower amplifier Frequency response.
- 9. Colpitt's oscillator using transistor.
- 10. Astable multi-vibrator using Transistor/op.amp.
- 11. Flip Flop -RS & RS latch

SECTION – B

MICROPROCESSOR 8085. (Any Two)

- 1. 8-bit addition and 8-bit subtraction.
- 2. 8-bit multiplication and 8-bit division.
- 3. Conversion from decimal to hexadecimal system.
- 4. Conversion from hexadecimal to decimal system.

Course Outcomes:

On completion of the course the learner will be able

CO 1: Understand the diode and transistor characteristics.

CO 2: Verify the rectifier circuits using diodes and implement them using hardware.

CO 3: Design the biasing circuits like self biasing.

CO 4: Design various amplifiers like CE, CC, common source amplifiers and implement

CO 5: Remember the concepts of unipolar junction transistor and observe its characteristics.

CO/PO	PO					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	S	S	S	М	S	S	S
CO2	S	S	М	S	S	S	М	S	S	S
CO3	S	S	М	S	S	S	М	S	S	S
CO4	S	S	М	S	S	S	М	S	S	S
CO5	S	S	М	S	S	S	S	М	М	S

Mapping of COs with POs & PSOs:

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester-VI/ Major Based Elective II	MATERIALS SCIENCE	Course Code: PUE4
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level Course Objectives	 K-1 Acquire/Remember K-2 Understand K-3 Apply K-4 Analyze K-5 Evaluate K-6 Create To develop knowledge in material science and to understand the n between properties and material characteristics. This course provides students an understanding of basic structure arrangement of materials, the phase diagrams, advantages of heat treatment method of heat treatment processes, powder metallurgy processes. The need and application of composite materials. Introduce the concept of structure property relations. Develop intuitive understanding of the subject to present a wealth of engineering examples to give students a feel of how material science if engineering practices. 	and crystal ent and the real world
UNIT	CONTENT	HOURS
I	Crystal Structure Types of crystals-space lattice-basis- unit cell and lattice parameters – Bravais lattices-Lattice planes and Miller indices-inter planar spacing in a cubic lattice-cubic lattice-SC – BCC – FCC- Sodium chloride and Diamond crystal structure – Bonding of solids (Ionic , Covalent , Metallic , Hydrogen).	18
II	Mechanical Behavior of Materials Different mechanical properties of engineering materials – creep – Fracture-technological properties – factors affecting mechanical properties	18

	of material-Heat treatment-cold and hot working-types of mechanical tests- metal forming process- deformation of metals-Deformation of crystals and polycrystalline materials.	
III	Super Conducting Materials Superconductivity – Properties-Meissner's effect- London equations - types of superconductors Type I and Type II –High temperature superconductors -Josephson effects and its applications – SQUIDS - Applications of superconductor- BCS Theory (Basic Idea).	18
IV	Nano MaterialsTypes of nano materials 1D ,2D ,&3D -Properties of nanomaterials(size dependent) -synthesis of nanomaterials- Fullurenes-Application ofnanomaterials - Carbon nanotubes- Fabrication and structure of carbonnano tubes - Properties of carbon nano tubes (Mechanical and Electrical) -Applications of CNT's.	18
V	Smart Materials Metallic glass and its applications — Fiber reinforced metals – SAW Materials and its applications – Biomaterials – Ceramic-Nuclear engineering materials-Nanophase materials - SMART materials- Conducting polymers- Optical materials - Fiber optic materials and their applications.	18

- 1. M. Arumugam, Material science, Anuradha puplishers, 1990.
- 2. Manasikark are-nanotechnology Fundemendals and Applications, I.K International house publishing,2011.

Reference Books:

- 1. V. Raghavan, Material Science and Engineering, Printice Hall India., 2004.
- 2. V. Rajendran, *Material Science*, Tata McGraw Hill Ltd, New Delhi, 2001.

Web Resources:

https://www.sciencedaily.com/terms/materials_science.htm https://www.ox.ac.uk/admissions/undergraduate/courses-listing/materials-science

Course Outcomes:

On completion of the course the learner will be able

- CO 1: Upon completion of this course the student will be able to:
- CO 2: Identify the properties of metals with respect to crystal structure and grain size
- CO 3: Interpret the phase diagrams of materials
- CO 4: Classify and Distinguish different types of cast irons, steels and non ferrous alloys.
- CO 5: Describe the concept of heat treatment of steels & amp; strengthening mechanisms

CO/PO	РО					PSO	PSO				
	1	2	3	4	5	1	2	3	4	5	
CO1	S	S	М	S	S	S	М	S	М	S	
CO2	S	S	М	S	S	S	S	S	М	S	
CO3	S	S	М	S	S	S	S	S	М	S	
CO4	S	S	М	М	S	S	S	М	М	S	
CO5	S	S	М	S	S	S	S	М	М	S	

Mapping of COs with POs & PSOs:

- S Strongly Correlated
- M Moderately Correlated
- W-Weakly Correlated
- N No Correlation

Semester-VI / Major Based Elective II	Nano Materials and Applications	Course Code: PUE4
Instruction Hours: 5	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level Course Objectives	 K-1 Acquire/Remember K-2 Understand K-3 Apply K-4 Analyze K-5 Evaluate K-6 Create To understand the theoretical concepts involved in crystal growth and sciences and to learn the basic characterizing techniques of materials. To foundational knowledge of the Nanoscience and related fields. To make the students acquire an understanding the Nanoscience and Apple 						
	 To help them understand in broad outline of Nanoscience and Nanotechnology. For Nanomaterials understood the principles and Characterization Techniques 						
UNIT	CONTENT	HOURS					
I	Back ground of Nano technology Scientific revolution-Emergence of Nano technology, Challenges in Nano technology –Periodic Table, Atomic structures, Molecules and Phases- Energy, Atomic size, surfaces and dimensional space.	15					
II	Preparation of Nano Materials Nano Material-Preparation-Top down-ball milling,Nano lithography- Bottom up, Self Assembly -Sol gel -Hydro thermal method.	15					
III	Carbon Nano Structures Carbon molecules and carbon bond - C60: Discovery and structure of C60 and its crystal Superconductivity in C60.	15					

IV	Carbon Nanotubes	15
	Carbon nanotubes: Fabrication - Structure - Electrical properties -	
	Vibrational properties Mechanical properties Applications (fuel cells,	
	chemical sensors, catalysts).	
V	Applications	15
	Molecular electronics and nanoelectronics – Nanorobots Biological	
	applications of nanoparticles - Catalysis by gold nanoparticles.	

- 1. ManasiKarkare, Nano Technology Fundamentals and Applications.
- 2. K.InternationalPublishing House Limited.
- 3. CharlesP.PooleJRAnd Frank Owens."Introduction to Nanotechnology" Wiley, 2003.

Reference Books

- 1. B.B.Laud, NonLinear Optics, 2ndEdn.NewAge International (P)Limited.Delhi, 1991.
- 2. RobertW.Boyd, Non Linear Optics, 2ndEdn.AcademicPress,Newyork,2003.
- 3 K.Ravichandran, K.Swaminathan, B.Sakthivel C.Pavidoss Introduction to

Characterization of Nano Material and Thin Films(Publication JAZYM Publication)

Web Resoruces

www.math.ox.ac.uk

www.math.upenn.edu.

Mathematical Physics-A Modern Intro to its Foundations-

S.Hassani(Springer, 1999)WW.pdf

Course Outcomes:

On completion of the course the learner will be able

CO 1: Learn about the background on Nanoscience

CO 2: Understand the synthesis of nanomaterials and their application and the impact of nanomaterials on environment

CO 3: Apply their learned knowledge to develop Nanomaterial's.

CO 4: Choose appropriate synthesis technique to synthesize quantum nanostructures of desired size, shape and surface properties.

CO 5: Appreciate enhanced sensitivity of nanomaterial based materials and their novel applications in industry

Mapping of COs with POs & PSOs:

CO/PO	РО				PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	М	S	S	S	М	М	S
CO2	S	S	М	S	S	S	S	S	М	S
CO3	S	S	М	S	S	S	S	S	М	S
CO4	S	S	М	S	S	S	S	S	S	S
CO5	S	S	М	S	S	S	S	S	S	S

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester- VI / Major Based Elective III	COMMUNICATION PHYSICS	Course Code: PUE5
Instruction Hours: 6	Credits: 6	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level Course Objectives	 K-1 Acquire/Remember K-2 Understand K-3 Apply K-4 Analyze K-5 Evaluate K-6 Create To promote scientific temper among students and update the basic functioning of various communication systems. To be highly skilled, interdisciplinary professionals who can identify and solve engineering problems from unusually broad physical perspectives. To engage vigorously in further studies in interdisciplinary graduate programs and a wide variety of other lifelong learning opportunities. 								
	 To pursue careers that incorporate ethical and professional responsibility, well as good citizenship. Students will demonstrate a thorough understanding of the analytic approach to modeling of physical phenomena. 								
UNIT	CONTENT	HOURS							
Ι	UNIT I Radio transmission and reception Transmitter-modulation-need for modulation- types of modulation-amplitude,frequency and phase modulation- modulation factor-sideband frequencies in AM wave-limitations of amplitude modulation - frequency modulation-block diagram of AM and FM Transmitter. Receiver- demodulation-AM & FM radio receivers- super heterodyne radio receiver.	18							
Π	UNIT II Fiber Optic Communication Introduction –structure of optical fiber –total internal reflection in optical fiber – principal and propagation of light in optical fiber -	18							

	acceptance angle - numerical aperture – types of optical fibers based on material – number of modes – refractive index profile - fiber optical communication system (block diagram) - fiber optic sensors – Temperature sensor – fiber optic endoscope.	
Ш	UNIT III Radar Communication Basic radar system -Radar range –Antenna scanning – Pulsed radar system - A-Scope- Plan position indicator- Tracking radar- Moving target indicator- Doppler effect-MTI Principle- CW Doppler Radar- Frequency modulator CW Radar.	18
IV	UNIT IV Satellite Communication Introduction – history of satellites – satellite communication system – satellite orbits – classification of satellites – types of satellites – basic components of satellite communication – constructional features of satellites- multiple access – communication package – antenna- power source – satellite foot points- satellite communication in India.	18
V	UNIT V Mobile Communication GSM – mobile services- concept of cell – system architecture – radio interface – logical channels and frame hierarchy – protocols – localization and calling – Handover- facsimile (FAX) – application – VSAT (very small aperture terminals) – Modem – IPTV (internet protocol television) – Wi-Fi - 3G ,4G (Basic ideas only).	18

- 1. Metha V.K., Principles of Electronics, S. Chand & Company Ltd., 2013
- Anokh Singh and Chopra A.K., *Principles of communication Engineering*, S. Chand & Company PVT. Ltd., 2013.
- 3. Mani I. P., A text book of Engineering Physics, Dhanam Publications, Chennai-42, 2014.

Reference Books:

- 1. PoornimaThangam I, Satellite communication, Charulatha Publications, 2012.
- 2. Dennis Roddy and John Coolen, *Electronic Communication*, PHI, 1990.
- 3. William C.Y. lee, *Cellular telecommunication* (second edition), Tata Mcgraw hill, 1991.

Web Resources:

https://publons.com/journal/65968/communications-physics/

https://vjs.ac.vn/index.php/cip

Course Outcomes:

On completion of the course the learner will be able

CO 1: Students will demonstrate an understanding of core knowledge in Physics, including the major premises of classical mechanics, Example and Modern Physics.

CO 2: Students will demonstrate written and oral communication skills in communicating physicsrelated

CO 3: Students will demonstrate understanding of the applications of numerical techniques for modeling physical systems for which analytical methods are inappropriate or of limited utility.

CO 4: Students will demonstrate a thorough understanding of the analytical approach to modeling of physical phenomena.

CO 5: Students will demonstrate an understanding of the impact of Physics and Science on society.

CO/PO	PC					PSO	PSO					
	1	2	3	4	5	1	2	3	4	5		
CO1	S	S	Μ	S	S	S	S	S	М	S		
CO2	S	S	Μ	S	S	S	S	М	S	S		
CO3	S	S	Μ	S	S	S	S	М	S	S		
CO4	S	S	Μ	S	S	S	S	Μ	S	S		
CO5	S	S	Μ	S	S	S	S	Μ	S	S		

Mapping of COs with POs & PSOs:

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated

Semester VI / Major Based Elective III	COMPUTER ORGANIZATION AND ARCHITECTURE	Course Code: PUE5
Instruction Hours: 6	Credits: 5	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100

Cognitive Level Course Objectives	 K-2 Understand K-3 Apply K-4 Analyze K-5 Evaluate K-6 Create To promote scientific temper among students and update the basic for 					
UNIT	CONTENT					
Ι	Number Systems – Decimal, Binary, Octal and Hexadecimal Systems – Conversion from one system to another – Binary Addition, Subtraction, Multiplication and Division – Binary Codes– 8421, 2421, Excess-3, Gray, BCD – Alphanumeric Codes – Error Detection Codes.	18				
II	Boolean Laws and Theorems – Boolean Expressions – Sum of Products – Product of Sums – Simplification of Boolean Expressions – Karnaugh Map Method (up to 4 Variables) – Implementation of Boolean Expressions using GateNetworks.	18				
III	Combinational Circuits – Multiplexers – Demultiplexers – Decoders – Encoders – Arithmetic Building Blocks – Half and Full Adders – Half and Full Subtractors – Parallel adder –2's Complement Adder – Subtractor – BCD Adder.	18				

IV	Sequential Circuits – Flip Flops – RS, JK, and Master-Slave Flip	18
	Flops -Shift Register - Counters - Asynchronous, MOD-n and	
	Synchronous Counters – BCD Counter –Ring Counter.	
V	Central Processing Unit: General Register Organization – Stack	18
	Organization – Instruction Formats – Addressing Modes – Data	
	Transfer and Manipulation – Program Control – Reduced Instruction	
	Set Computer – CISC characteristics – RISC Characteristics.	

1. Donald P. Leach, Albert Paul Malvino and GoutamSaha, Digital Principles and Applications, TataMcGraw Hill, Sixth Edition, Third Reprint, 2007.

Unit:I: Chapter-5 Section (5.1-5.8)

Unit:II : Chapter-2 Section (2.1-2.2), Chapter-3 Section (3.1, 3.2, 3.5, 3.7)

Unit: III: Chapter-4 Section (4.1-4.3, 4.6), Chapter-6 Section (6.7, 6.8)

2. Thomas C. Bartee, Digital Computer Fundamentals, Tata McGraw-Hill, Sixth Edition, Twenty Fifth Reprint, 2006.

Unit:III : Chapter-5 Section (5.1, 5.3, 5.10, 5.11) Unit:IV : Chapter-4 Section (4.1-

4.9)

3. Morris Mano M, Computer System Architecture, Prentice Hall of India, Third Edition, 2008.

Unit: I: Chapter-3 Section (3.5-3.6)

Unit: V: Chapter-8 Section (8.2-8.8)

Reference Book

- 1. Morris Mano. M, Digital Logic and Computer Design, Prentice Hall of India, 2008.
- 2. 2.Linda Null, Julia Lobur, The Essentials of Computer Organization and Architecture, Fourth Edition2014.

Web Resources:

https://www.geeksforgeeks.org/computer-organization-and-architecture-tutorials/ https://onlinecourses.nptel.ac.in/noc21_cs61/preview

Course Outcomes:

On completion of the course the learner will be able

CO 1: Promoting scientific temper among students and update the basic functioning of various communication systems.

CO 2:Understanding the principles of digital computer logic circuits and their design.

CO 3: Understand the working of a central processing unit architecture of a computer

CO 4: Apply the analytical approach of physical phenomena.

CO 5: Promoting scientific temper among students and update the basic functioning of various communication systems.

CO/PO	PO					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	S	S	S	S	S	М	S
CO2	S	S	М	S	S	S	S	S	М	S
CO3	S	S	М	S	S	S	S	S	М	S
CO4	S	S	М	S	S	S	S	М	S	S
CO5	S	S	М	S	S	S	S	М	S	S

Mapping of COs with POs & PSOs:

S - Strongly Correlated

M - Moderately Correlated

W-Weakly Correlated